已知圓內(nèi)一點(diǎn)
過點(diǎn)
的直線
交圓
于
兩點(diǎn),且滿足
(
為參數(shù)).
(1)若,求直線
的方程;
(2)若求直線
的方程;
(3)求實(shí)數(shù)的取值范圍.
(1) 或
(2)
(3)
【解析】本試題主要是考查了直線與圓位置關(guān)系的運(yùn)用。以及直線方程的求解和參數(shù)的求值問題。
(1)因?yàn)楫?dāng)直線的斜率不存在時(shí),
,不滿足,故可設(shè)所求直線
的方程為
與圓的方程聯(lián)立,結(jié)合韋達(dá)定理得到結(jié)論。
(2)設(shè)直線方程與圓聯(lián)立,然后結(jié)合向量的關(guān)系式得到坐標(biāo)關(guān)系,并結(jié)合韋達(dá)定理得到參數(shù)k的值,進(jìn)而得到直線的方程。
(3)可設(shè)所求直線的方程為
,
代入圓的方程,整理得,(*)
設(shè),則
為方程(*)的兩根,
由可得
則有,
得
, ----(12分)
而,由
可解得
所以實(shí)數(shù)的取值范圍為可得。
解:(I)當(dāng)直線的斜率不存在時(shí),
,不滿足,故可設(shè)所求直線
的方程為
, ------------(1分)
代入圓的方程,整理得, --------------(2分)
利用弦長(zhǎng)公式可求得直線方程為或
.--------------(4分)
(II)當(dāng)直線的斜率不存在時(shí),
或
,不滿足,故可設(shè)所求直線
的方程為
, ---------------(5分)
代入圓的方程,整理得,
設(shè),則
為方程(*)的兩根,
由可得
---------(6分)
則有,
得
,解得
---(8分)
所以直線的方程為
-------------(9分)
(III)當(dāng)直線的斜率不存在時(shí),
或
,
或
,---------(10分)
當(dāng)直線的斜率存在時(shí)可設(shè)所求直線
的方程為
,
代入圓的方程,整理得,(*)
設(shè),則
為方程(*)的兩根,
由可得
則有,
得
, -----(12分)
而,由
可解得
所以實(shí)數(shù)的取值范圍為
-----------(14分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2015屆吉林省白山市高一下學(xué)期期末考試文科數(shù)學(xué)卷(解析版) 題型:解答題
已知圓內(nèi)一點(diǎn)
過點(diǎn)
的直線
交圓
于
兩點(diǎn),且滿足
(
為參數(shù)).
(1)若,求直線
的方程;
(2)若求直線
的方程;
(3)求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆北京市高一第一學(xué)期期末考試數(shù)學(xué) 題型:填空題
已知圓:
,過點(diǎn)
的直線
將圓
分成弧長(zhǎng)之比為
的兩段圓弧,則直線
的方程為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012屆北京市海淀區(qū)高三上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:填空題
已知圓:
,過點(diǎn)
的直線
將圓
分成弧長(zhǎng)之比為
的兩段圓弧,則直線
的方程為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012屆北京市海淀區(qū)高三上學(xué)期期末考試文科數(shù)學(xué) 題型:填空題
已知圓:
,過點(diǎn)
的直線
將圓
分成弧長(zhǎng)之比為
的兩段圓弧,則直線
的方程為
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com