如圖所示,已知P(4,0)是圓x2+y2=36內(nèi)的一點(diǎn),A、B是圓上兩動點(diǎn),

且滿足∠APB=90°,求矩形APBQ的頂點(diǎn)Q的軌跡方程.

x2+y2=56


解析:

設(shè)AB的中點(diǎn)為R,坐標(biāo)為(x1,y1),Q點(diǎn)坐標(biāo)為(x,y),

則在Rt△ABP中,

|AR|=|PR|,

又因?yàn)镽是弦AB的中點(diǎn),依垂徑定理有

Rt△OAR中,|AR|2=|AO|2-|OR|2=36-().

又|AR|=|PR|=,

所以有(x1-4)2+=36-().

-4x1-10=0.

因?yàn)镽為PQ的中點(diǎn),

所以x1=,y1=.

代入方程-4x1-10=0,得

·-10=0.

整理得x2+y2=56.這就是Q點(diǎn)的軌跡方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知P(4,0)是圓x2+y2=36內(nèi)的一點(diǎn),A,B是圓上兩動點(diǎn),且滿足∠APB=90°,求AB的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知P(4,0)是圓x2+y2=36內(nèi)的一點(diǎn),A、B是圓上兩動點(diǎn),且滿足∠APB=90°,求矩形APBQ的頂點(diǎn)Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:專項(xiàng)題 題型:解答題

如圖所示,已知P(4,0)是圓x2+y2=36內(nèi)的一點(diǎn),A,B是圓上兩動點(diǎn),且滿足∠APB=90°, 求矩形APBQ的頂點(diǎn)Q的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年廣東省廣州一中高三數(shù)學(xué)二輪復(fù)習(xí):圓錐曲線(解析版) 題型:解答題

如圖所示,已知P(4,0)是圓x2+y2=36內(nèi)的一點(diǎn),A、B是圓上兩動點(diǎn),且滿足∠APB=90°,求矩形APBQ的頂點(diǎn)Q的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案