已知函數(shù)f(x)在定義域(0,+∞)上是單調(diào)函數(shù).若對任意x∈(0,+∞)都有f(f(x)-
9x
)=6
,則f(1)=
 
分析:根據(jù)題意可知f(x)-
9
x
為一個常數(shù)n,從而可以得到f(x)的表達式,根據(jù)f(n)=6,即可求得n,從而得到f(x)的表達式,即可求得f(1)的值.
解答:解:∵函數(shù)f(x)在定義域(0,+∞)上是單調(diào)函數(shù),且f(f(x)-
9
x
)=6
,
∴f(x)-
9
x
為一個常數(shù),
令這個常數(shù)為n,則有f(x)-
9
x
=n,①
f(n)=6,②
由①得 f(x)=n+
9
x
,③
令x=n,
得f(n)=n+
9
n
=6,
∴解得n=3,
∴f(x)=3+
9
x
,
∴f(1)=3+
9
1
=12,
故答案為:12.
點評:本題考查了函數(shù)單調(diào)性的性質(zhì),函數(shù)的求值問題.解題中運用了整體代換的思想和方程的思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=x3+x2,數(shù)列|xn|(xn>0)的第一項xn=1,以后各項按如下方式取定:曲線x=f(x)在(xn+1,f(xn+1))處的切線與經(jīng)過(0,0)和(xn,f (xn))兩點的直線平行(如圖).
求證:當n∈N*時,
(Ⅰ)xn2+xn=3xn+12+2xn+1;
(Ⅱ)(
1
2
)n-1xn≤(
1
2
)n-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-x,其圖象記為曲線C.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)證明:若對于任意非零實數(shù)x1,曲線C與其在點P1(x1,f(x1))處的切線交于另一點P2(x2,f(x2)),曲線C與其在點P2(x2,f(x2))處的切線交于另一點P3(x3,f(x3)),線段P1P2,P2P3與曲線C所圍成封閉圖形的面積分別記為S1,S2,則
S1S2
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的有( 。﹤.
①已知函數(shù)f(x)在(a,b)內(nèi)可導(dǎo),若f(x)在(a,b)內(nèi)單調(diào)遞增,則對任意的?x∈(a,b),有f′(x)>0.
②函數(shù)f(x)圖象在點P處的切線存在,則函數(shù)f(x)在點P處的導(dǎo)數(shù)存在;反之若函數(shù)f(x)在點P處的導(dǎo)數(shù)存在,則函數(shù)f(x)圖象在點P處的切線存在.
③因為3>2,所以3+i>2+i,其中i為虛數(shù)單位.
④定積分定義可以分為:分割、近似代替、求和、取極限四步,對求和In=
n
i=1
f(ξi)△x
中ξi的選取是任意的,且In僅于n有關(guān).
⑤已知2i-3是方程2x2+px+q=0的一個根,則實數(shù)p,q的值分別是12,26.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+
bx-1
-a(a∈R,a≠0)在x=3處的切線方程為(2a-1)x-2y+3=0
(1)若g(x)=f(x+1),求證:曲線g(x)上的任意一點處的切線與直線x=0和直線y=ax圍成的三角形面積為定值;
(2)若f(3)=3,是否存在實數(shù)m,k,使得f(x)+f(m-x)=k對于定義域內(nèi)的任意x都成立;
(3)若方程f(x)=t(x2-2x+3)|x|有三個解,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省臨沂市郯城一中高二(下)4月月考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

下列說法正確的有( )個.
①已知函數(shù)f(x)在(a,b)內(nèi)可導(dǎo),若f(x)在(a,b)內(nèi)單調(diào)遞增,則對任意的?x∈(a,b),有f′(x)>0.
②函數(shù)f(x)圖象在點P處的切線存在,則函數(shù)f(x)在點P處的導(dǎo)數(shù)存在;反之若函數(shù)f(x)在點P處的導(dǎo)數(shù)存在,則函數(shù)f(x)圖象在點P處的切線存在.
③因為3>2,所以3+i>2+i,其中i為虛數(shù)單位.
④定積分定義可以分為:分割、近似代替、求和、取極限四步,對求和中ξi的選取是任意的,且In僅于n有關(guān).
⑤已知2i-3是方程2x2+px+q=0的一個根,則實數(shù)p,q的值分別是12,26.
A.0
B.1
C.3
D.4

查看答案和解析>>

同步練習(xí)冊答案