(本小題滿分14分)

某家具廠有方木料90m3,五合板600m2,準(zhǔn)備加工成書桌和書櫥出售.已知生產(chǎn)每張書桌需要方木料0.1m3,五合板2m2,生產(chǎn)每個書櫥需要方木料0.2m2,五合板1m2,出售一張方桌可獲利潤80元,出售一個書櫥可獲利潤120元.

(1)如果只安排生產(chǎn)書桌,可獲利潤多少?

(2)怎樣安排生產(chǎn)可使所得利潤最大?

 

【答案】

由題意可畫表格如下:

 

方木料(m3

五合板(m2

利潤(元)

書桌(個)

0.1

2

80

書櫥(個)

0.2

1

120

…………………………………………………………………2分

(1)設(shè)只生產(chǎn)書桌x個,可獲得利潤z元,

∴x≤300.  ………………………………………………………………4分

所以當(dāng)x=300時,zmax=80×300=24000(元),即如果只安排生產(chǎn)書桌,最多可生產(chǎn)300張書桌,獲得利潤24000元.……………………………………………………………………………………………………6分

(2)設(shè)生產(chǎn)書桌x張,書櫥y個,利潤總額為z元.

z=80x+120y.  …………………………………………………8分

在直角坐標(biāo)平面內(nèi)作出上面不等式組所表示的平面區(qū)域,即可行域.

…………………………………………10分

 

 

作直線l:80x+120y=0,即直線l:2x+3y=0.

把直線l向右上方平移至l1的位置時,直線經(jīng)過可行域上的點M,

此時z=80x+120y取得最大值.………………………………………………………………………12分

∴當(dāng)x=100,y=400時,zmax=80×100+120×400=56000(元).

因此,生產(chǎn)書桌100張、書櫥400個,可使所得利潤最大.………………………………………14分

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達(dá)式,并求f(x)的最小正周期;
(II)當(dāng)x∈[0,
π
2
]  時,求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個焦點,當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進(jìn)行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點處的切線與直線平行.

⑴ 求,滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習(xí)冊答案