7.下列條件中,能判斷兩個平面平行的是(  )
A.一個平面內(nèi)的兩條直線平行于另一個平面
B.一個平面內(nèi)的無數(shù)條直線平行于另一個平面
C.平行于同一個平面的兩個平面
D.垂直于同一個平面的兩個平面

分析 A中,一個平面內(nèi)的兩條直線平行線平行于另一個平面,則這兩個平面相交或平行;在B中,一個平面內(nèi)的無數(shù)條平行線平行于另一個平面,則這兩個平面相交或平行;在C中,由平面平行的判定定理得平行于同一平面的兩個平面互相平行;在D中,垂直于同一個平面的兩個平面平行或相交.

解答 解:在A中,一個平面內(nèi)的兩條相交直線平行于另一個平面,則這兩個平面平行;
一個平面內(nèi)的兩條直線平行線平行于另一個平面,則這兩個平面相交或平行,故A錯誤;
在B中,一個平面內(nèi)的無數(shù)條直線平行于另一個平面,則這兩個平面相交或平行,故B錯誤;
在C中,由平面平行的判定定理得平行于同一平面的兩個平面互相平行,故C正確;
在D中,垂直于同一個平面的兩個平面平行或相交,故D錯誤.
故選:C.

點評 本題考查兩個平面是否平行的判斷,是中檔題,解題時要認真審題,注意平面與平面平行的判定定理的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=$2sin(4x+ϕ)(0<ϕ<\frac{π}{2})$的圖象經(jīng)過點(0,$\sqrt{3}$).
(1)求f($\frac{19π}{12}$)的值;
(2)若$f(\frac{1}{4}α-\frac{π}{12})=\frac{2}{3}$,$α∈({\frac{π}{2},π})$,$f(\frac{1}{4}β-\frac{5π}{24})=\frac{{2\sqrt{10}}}{10}$;β是第三象限角,求cos(α-β)的值;
(3)在(2)的條件下,求$\sqrt{tan\frac{α}{2}}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知命題p:若a>|b|,則a2>b2,命題q:若x2=4,則x=2,則下列命題中為真命題的是( 。
A.p∧qB.p∨qC.¬pD.q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.為了得到函數(shù)y=sin(2x-$\frac{π}{3}$)的圖象,只需把函數(shù)y=sin2x的圖象上所有的點至少向右平行移動$\frac{π}{6}$個單位長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點為(1,0),離心率為$\frac{1}{2}$.
(1)求橢圓C的標準方程;
(2)過點P(0,3)的直線m與C交于A、B兩點,若A是PB的中點,求直線m的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a等于( 。
A.-1或3B.-1或3C.1或3D.1或-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.設(shè)x,y滿足不等式組$\left\{\begin{array}{l}{2x+y≤6}\\{x≥0}\\{y≥0}\end{array}\right.$,且此不等式組表示的平面區(qū)域的整點的個數(shù)為n(整點是指橫坐標,縱坐標均為整數(shù)的點),則z=nx-3y-1的最大值為47.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知橢圓$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0),F(xiàn)為橢圓是上焦點,點A,B分別為橢圓的左右頂點,過點B作AF的垂線,垂足為N.
(1)若a=$\sqrt{2}$,△ABM的面積為1,求橢圓方程;
(2)是否存在橢圓,使得點B關(guān)于直線AF對稱的點D仍在橢圓上,若存在,求橢圓的離心率的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知-9,a1,a2,-1成等差數(shù)列,1,b1,b2,27成等比數(shù)列,則$\frac{b_2}{b_1}•({a_2}-{a_1})$=8.

查看答案和解析>>

同步練習冊答案