分析 設圓心為(a,b),得$\left\{\begin{array}{l}{b=2a}\\{4+(\frac{|a-b|}{\sqrt{2}})^{2}=12}\end{array}\right.$,由此能求出圓的標準方程.
解答 解:設圓心為(a,b),則圓心到直線x-y=0的距離為$\frac{|a-b|}{\sqrt{2}}$,
∵圓的半徑為2$\sqrt{3}$,圓心在y=2x上,且圓被直線x-y=0截得的弦長為4,
∴$\left\{\begin{array}{l}{b=2a}\\{4+(\frac{|a-b|}{\sqrt{2}})^{2}=12}\end{array}\right.$,
∴解得a=4,b=8或a=-4,b=-8,
∴圓的標準方程是(x-4)2+(y-8)2=12或(x+4)2+(y+8)2=12.
點評 本題考查圓的方程的求法,是中檔題,解題時要認真審題,注意圓的性質(zhì)的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $y={x^{\frac{1}{2}}}$ | B. | y=x2 | C. | y=x3 | D. | y=x-1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{5}$=1 | B. | $\frac{{x}^{2}}{13}$-$\frac{{y}^{2}}{13}$=1 | C. | $\frac{{y}^{2}}{5}$-$\frac{{x}^{2}}{5}$=1 | D. | $\frac{{y}^{2}}{13}$-$\frac{{x}^{2}}{13}$=1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | 3 | C. | $\frac{5\sqrt{2}}{2}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=$\sqrt{3}$(x+4) | B. | y=$\frac{\sqrt{3}}{3}$(x+4) | C. | y=$\frac{\sqrt{2}}{2}$(x+4) | D. | y=$\sqrt{2}$(x+4) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com