分析 (I)利用等差數(shù)列的通項公式即可得出.
(II)利用“裂項求和”方法即可得出.
解答 解:(Ⅰ)設(shè)公差為d,∵a1+a4=10,a3=6.
∴$\left\{\begin{array}{l}2{a_1}+3d=10\\{a_1}+2d=6\end{array}\right.$,
解得$\left\{\begin{array}{l}{a_1}=2\\ d=2\end{array}\right.$,
∴數(shù)列{an}的通項公式為an=2n.
(Ⅱ)由(Ⅰ)知${b_n}=\frac{4}{2n•2(n+1)}$,從而${b_n}=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$,
∴${S_n}=({1-\frac{1}{2}})+({\frac{1}{2}-\frac{1}{3}})+…+({\frac{1}{n}-\frac{1}{n+1}})=1-\frac{1}{n+1}=\frac{n}{n+1}$.
點評 本題考查了等差數(shù)列的通項公式、“裂項求和”方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 有1個 | B. | 有2個 | C. | 有無數(shù)個 | D. | 至多有一個 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com