已知函數(shù),
(1)當(dāng)時(shí),求的值;
(2)證明函數(shù)在上是減函數(shù),并求函數(shù)的最大值和最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某公司為了實(shí)現(xiàn)1000萬(wàn)元利潤(rùn)的目標(biāo),準(zhǔn)備制定一個(gè)激勵(lì)銷(xiāo)售人員的獎(jiǎng)勵(lì)方案:在銷(xiāo)售利潤(rùn)達(dá)到10萬(wàn)元時(shí),按銷(xiāo)售利潤(rùn)進(jìn)行獎(jiǎng)勵(lì),且獎(jiǎng)金(單位:萬(wàn)元)隨銷(xiāo)售利潤(rùn)(單位:萬(wàn)元)的增加而增加,但獎(jiǎng)金總數(shù)不超過(guò)5萬(wàn)元,同時(shí)獎(jiǎng)金不能超過(guò)利潤(rùn)的%.現(xiàn)有三個(gè)獎(jiǎng)勵(lì)模型:,分析與推導(dǎo)哪個(gè)函數(shù)模型能符合該公司的要求?并給予證明.(注:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/eb/2/1cwol2.png" style="vertical-align:middle;" />的函數(shù)對(duì)任意實(shí)數(shù)滿足
,且.
(1)求及的值;
(2)求證:為奇函數(shù)且是周期函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)是定義在(0,+∞)上的單調(diào)增函數(shù),滿足f(xy)=f(x)+f(y),f(3)=1
(1)求f(1)的值
(2)若滿足f(x) +f(x-8)≤2 求x的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)是定義在R上的兩個(gè)函數(shù),是R上任意兩個(gè)不等的實(shí)根,設(shè)
恒成立,且為奇函數(shù),判斷函數(shù)的奇偶性并說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)設(shè)函數(shù)
(1)求函數(shù)的定義域;
(2)求函數(shù)的值域;
(3)求函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分10分)
已知函數(shù)(為常數(shù),且)的圖象過(guò)點(diǎn).
(1)求實(shí)數(shù)的值;
(2)若函數(shù),試判斷函數(shù)的奇偶性,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com