【題目】已知常數(shù)λ≥0,設(shè)各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,滿足:a1 = 1,

).

(1)若λ = 0,求數(shù)列{an}的通項(xiàng)公式;

(2)若對一切恒成立,求實(shí)數(shù)λ的取值范圍.

【答案】III

【解析】

試題(I時,,變形得,即數(shù)列為一個等差數(shù)列,從而,再根據(jù);也可變形為,即,從而有II)同(I)可得,再利用疊加法得到,利用 ,因?yàn)?/span>對一切恒成立,可化簡為對一切恒成立,變量分離得對一切恒成立,下面只需求出最大值即可,利用求數(shù)列單調(diào)性方法得是一切中的最大項(xiàng),因此

試題解析:解:(I時,

,

,

II ,

,,,).

相加,得

).

上式對也成立,

).

).

,得,即

, ,

對一切恒成立,

對一切恒成立.即對一切恒成立.

,則

當(dāng)時,

當(dāng)時,;

是一切中的最大項(xiàng).

綜上所述,的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐A﹣BCD中,已知三角形ABC和三角形DBC所在平面互相垂直,AB=BD,∠CBA=∠CBD= ,則直線AD與平面BCD所成角的大小是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (α∈[0,2π))是奇函數(shù),則α=(
A.0
B.
C.π
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l:y=k(x+2)與圓O:x2+y2=4相交于不重合的A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),且三點(diǎn)A、B、O構(gòu)成三角形.

(1)求k的取值范圍;

(2)三角形ABO的面積為S,試將S表示成k的函數(shù),并求出它的定義域;

(3)求S的最大值,并求取得最大值時k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知P在橢圓上,是橢圓的兩個焦點(diǎn),,的三條邊長成等差數(shù)列,則橢圓的離心率e =___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講
設(shè)函數(shù)f(x)=|x﹣1|﹣|2x+1|的最大值為m.
(1)作出函數(shù)f(x)的圖象;
(2)若a2+2c2+3b2=m,求ab+2bc的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了了解本校高一學(xué)生每周課外閱讀時間(單位:小時)的情況,按10%的比例對該校高一600名學(xué)生進(jìn)行抽樣統(tǒng)計(jì),將樣本數(shù)據(jù)分為5組:第一組[0,2),第二組[2,4),第三組[4,6),第四組[6,8),第五組[8,10),并將所得數(shù)據(jù)繪制成如圖所示的頻率分布直方圖:
(Ⅰ)求圖中的x的值;
(Ⅱ)估計(jì)該校高一學(xué)生每周課外閱讀的平均時間;
(Ⅲ)為了進(jìn)一步提高本校高一學(xué)生對課外閱讀的興趣,學(xué)校準(zhǔn)備選拔2名學(xué)生參加全市閱讀知識競賽,現(xiàn)決定先在第三組、第四組、第五組中用分層抽樣的放法,共隨機(jī)抽取6名學(xué)生,再從這6名學(xué)生中隨機(jī)抽取2名學(xué)生代表學(xué)校參加全市競賽,在此條件下,求第三組學(xué)生被抽取的人數(shù)X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線x2=4y的焦點(diǎn)為F,過點(diǎn)F作斜率為k(k>0)的直線l與拋物線相交于A、B兩點(diǎn),且點(diǎn)P恰為AB的中點(diǎn),過點(diǎn)P作x軸的垂線與拋物線交于點(diǎn)M,若|MF|=4,則直線l的方程為(
A.
B.y= x+1
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=lnx,g(x)= (m>0).
(1)當(dāng)m=1時,函數(shù)y=f(x)與y=g(x)在x=1處的切線互相垂直,求n的值;
(2)若對任意x>0,恒有|f(x)|≥|g(x)|成立,求實(shí)數(shù)n的值及實(shí)數(shù)m的最大值.

查看答案和解析>>

同步練習(xí)冊答案