18.如圖,已知AD是△ABC內(nèi)角∠BAC的角平分線.
(1)用正弦定理證明:$\frac{AB}{AC}=\frac{DB}{DC}$;
(2)若∠BAC=120°,AB=2,AC=1,求AD的長.

分析 (1)根據(jù)AD是∠BAC的角平分線,利用正弦定理,即可證明結(jié)論成立;
(2)根據(jù)余弦定理,先求出BC的值,再利用角平分線和余弦定理,即可求出AD的長.

解答 解:(1)∵AD是∠BAC的角平分線,∴∠BAD=∠CAD,
根據(jù)正弦定理,在△ABD中,$\frac{sin∠BAD}{BD}$=$\frac{sin∠ADB}{BA}$,
在△ADC中,$\frac{sin∠DAC}{DC}$=$\frac{sin∠ADC}{AC}$,
∵sin∠ADB=sin(π-∠ADC)=sin∠ADC,
∴$\frac{sin∠BAD}{sin∠ADB}$=$\frac{DB}{AB}$,$\frac{sin∠DAC}{sin∠ADC}$=$\frac{DC}{AC}$,
∴$\frac{AB}{AC}$=$\frac{DB}{DC}$;
(2)根據(jù)余弦定理,cos∠BAC=$\frac{{BA}^{2}{+AC}^{2}{-BC}^{2}}{2•AB•AC}$,
即cos120°=$\frac{{2}^{2}{+1}^{2}{-BC}^{2}}{2×2×1}$,
解得BC=$\sqrt{7}$,
又$\frac{AB}{AC}$=$\frac{DB}{DC}$,
∴$\frac{DB}{DC}$=$\frac{2}{1}$,
解得CD=$\frac{\sqrt{7}}{3}$,BD=$\frac{2\sqrt{7}}{3}$;
設(shè)AD=x,則在△ABD與△ADC中,
根據(jù)余弦定理得,
cos60°=$\frac{1{+x}^{2}{-(\frac{\sqrt{7}}{3})}^{2}}{2•x•1}$,
且cos60°=$\frac{{2}^{2}{+x}^{2}{-(\frac{2\sqrt{7}}{3})}^{2}}{2•x•2}$,
解得x=$\frac{2}{3}$,即AD的長為$\frac{2}{3}$.

點(diǎn)評(píng) 本題考查了角平分線定理和正弦、余弦定理的應(yīng)用問題,是綜合性題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在空間四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點(diǎn),若AC=BD=2,且AC與BD成 60°,則四邊形EFGH的面積為( 。
A.$\sqrt{3}$B.$\frac{{\sqrt{3}}}{4}$C.$\frac{{\sqrt{3}}}{8}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知橢圓C經(jīng)過點(diǎn)(1,0),(0,2),則橢圓C的標(biāo)準(zhǔn)方程為( 。
A.x2+$\frac{y^2}{2}$=1B.$\frac{x^2}{2}$+y2=1C.x2+$\frac{y^2}{4}$=1D.$\frac{x^2}{4}$+y2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.給出下列命題:
①若數(shù)列{an}為等差數(shù)列,Sn為其前n項(xiàng)和,則Sn,S2n-Sn,S3n-S2n是等差數(shù)列;
②若數(shù)列{an}為等比數(shù)列,Sn為其前n項(xiàng)和,則Sn,S2n-Sn,S3n-S2n是等比數(shù)列;
③若數(shù)列{an},{bn}均為等差數(shù)列,則數(shù)列{an+bn}為等差數(shù)列;
④若數(shù)列{an},{bn}均為等比數(shù)列,則數(shù)列{an•bn}為等比數(shù)列
其中真命題的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,正方體ABCD-A1B1C1D1繞其體對(duì)角線BD1旋轉(zhuǎn)θ之后與其自身重合,則θ的值可以是( 。
A.$\frac{5π}{6}$B.$\frac{3π}{4}$C.$\frac{2π}{3}$D.$\frac{3π}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知向量$\overrightarrow{a}$與$\overrightarrow$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|=2,且$\overrightarrow$⊥(2$\overrightarrow{a}$+$\overrightarrow$),則向量$\overrightarrow{a}$與$\overrightarrow$的夾角為(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)a,b是非零實(shí)數(shù),若a<b,則下列不等式成立的是( 。
A.$\frac{a}$<$\frac{a}$B.$\frac{1}{a^{2}}$<$\frac{1}{{a}^{2}b}$C.a2<b2D.ab2<a2b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{3}^{x}+4a,x>3}\\{2x+{a}^{2},x≤3}\end{array}\right.$,其中a>0,若f(x)的值域?yàn)镽,則實(shí)數(shù)a的取值范圍是[7,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知向量$\overrightarrow{a}$=(2sin$\frac{x}{4}$,2sin$\frac{x}{4}$),$\overrightarrow$=(cos$\frac{x}{4}$,-$\sqrt{3}$sin$\frac{x}{4}$).
(Ⅰ)求函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$+$\sqrt{3}$的最小正周期;
(Ⅱ)若β=$\frac{2sinα}{f(2α+\frac{π}{3})}$,g(β)=tan2α,α≠$\frac{π}{4}$+$\frac{kπ}{2}$且α≠$\frac{π}{2}$+kπ(k∈Z),數(shù)列{an}滿足a1=$\frac{1}{4}$,an+12=$\frac{1}{2}$ang(an)(n≤16且n∈N*),令bn=$\frac{1}{{{a}_{n}}^{2}}$,求數(shù)列{bn}的通項(xiàng)公式及前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案