17.函數(shù)f(x)=$\sqrt{4-x}$+lg(x-1)+(x-3)0 的定義域?yàn)椋ā 。?table class="qanwser">A.{x|1<x≤4}B.{x|1<x≤4且x≠3}C.{x|1≤x≤4且x≠3}D.{x|x≥4}

分析 為使函數(shù)f(x)有意義,便可得出關(guān)于x的不等式組,解出x的范圍,即得出f(x)的定義域.

解答 解:要使f(x)有意義,則:
$\left\{\begin{array}{l}{4-x≥0}\\{x-1>0}\\{x≠3}\end{array}\right.$;
解得1<x≤4,且x≠3;
∴f(x)的定義域?yàn)閧x|1<x≤4,且x≠3}.
故選B.

點(diǎn)評(píng) 考查函數(shù)定義域的概念及求法,以及對(duì)數(shù)函數(shù)的定義域,并清楚x0中的x≠0.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}的前n項(xiàng)和為Sn,且2Sn=1-an(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)${b_n}={log_{\frac{1}{3}}}{a_n}$,Cn=$\frac{{\sqrt{n+1}-\sqrt{n}}}{{\sqrt{b_nb_{n+1}}}}$,記數(shù)列{Cn}的前n項(xiàng)和Tn,求證:Tn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.直線2x+y-2=0被圓x2+y2=5截得的弦長(zhǎng)為$\frac{{2\sqrt{105}}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在△ABC中,內(nèi)角A,B,C所對(duì)應(yīng)的邊分別為a,b,c,若asin2B+bsinA=0,b=$\sqrt{3}$C,則$\frac{c}{a}$=( 。
A.1B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,四棱錐P-ABCD的底面為矩形,PA⊥底面ABCD,E,F(xiàn)分別為AB,PC的中點(diǎn),AB=$\sqrt{2}$AD.
(Ⅰ)求證:EF∥平面PAD;
(Ⅱ)求證:DE⊥PC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=logax+b(a>0,a≠1)的定義域、值域都是[1,2],則a+b=$\frac{5}{2}$或3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知二次函數(shù)f(x)=ax2+2x+c的對(duì)稱軸為x=1,g(x)=x+$\frac{1}{x}$(x>0).
(1)求函數(shù)g(x)的最小值及取得最小值時(shí)x的值;
(2)試確定c的取值范圍,使g(x)-f(x)=0至少有一個(gè)實(shí)根;
(3)當(dāng)c=m-3時(shí),F(xiàn)(x)=f(x)-(m+2)x,對(duì)任意x∈(1,2]有F(x)≤0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)f(x)=x2-2x,x∈[t,t+1](t∈R),求函數(shù)f(x)的最小值g(t)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知直線x-y+1=0與圓C:x2+y2-4x-2y+m=0交于A,B兩點(diǎn);
(1)求線段AB的垂直平分線的方程;
(2)若|AB|=2$\sqrt{2}$,求m的值;
(3)在(2)的條件下,求過點(diǎn)P(4,4)的圓C的切線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案