(本題滿分16分)
已知
⑴當(dāng)不等式
的解集為
時(shí),求實(shí)數(shù)
的值;
⑵若對任意實(shí)數(shù)
,
恒成立,求實(shí)數(shù)
的取值范圍;
⑶設(shè)
為常數(shù),解關(guān)于
的不等式
.
或
1
0當(dāng)
即
時(shí),
2
0當(dāng)
即
時(shí),解集為
}
3
0當(dāng)
即
時(shí),解集為{
或
}
解:
⑴
即
∴
∴
∴
或
(若用根與系數(shù)關(guān)系也算對) …………………
…4分
⑵
,即
即
…………6分
∴
恒成立
…………………………10分
⑶
即
,∴△=
1
0當(dāng)
即
時(shí),
…………………………………12分
2
0當(dāng)
即
時(shí),解集為
}
………………………14分
3
0當(dāng)
即
時(shí),解集為{
或
} ……16分
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知二次函數(shù)
,若對于任意的
,
,且
,
,求證:存在
使得
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)二次函數(shù)
,
已知不論
為何實(shí)數(shù),恒有
和
。
(1)求
證:b+c=-2
(2)求證:
(3)若函數(shù)
的最大值為8,求b、c的值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
已知
的最值及單調(diào)區(qū)間。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
先閱讀以下不等式的證明,再類比解決后面的問題
若
,則
.
證明:構(gòu)造二次函數(shù)
將
展開得:
對一切實(shí)數(shù)
恒有
,且拋物線的開口向上
,
.
(Ⅰ)類比猜想:
若
,則
.
(在橫線上填寫你的猜想結(jié)論)
(Ⅱ)證明你的猜想結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)
f(
x)=
x2–2
ax+2,當(dāng)
x∈[–1,+∞)時(shí),
f(
x)>
a恒成立,求
a的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分)
設(shè)
為實(shí)數(shù),函數(shù)
.
(1)若
,求
的取值范圍;(2)求
的最小值;
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知函數(shù)
f (
x) = 3
ax-2
a + 1在區(qū)間 (-1,1)內(nèi)存在
x0;使
f (
x0)
= 0,則實(shí)數(shù)
a的取值范圍是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
a<0是方程
至少有一個(gè)負(fù)數(shù)的( )條件
A.充分不必要 | B.必要不充分 | C.充要 | D.既不充分也不必要 |
查看答案和解析>>