【題目】如圖,在長方體中滿足,若點(diǎn)在棱上點(diǎn)在棱上,且.
(1)求證:;
(2)當(dāng)是的中點(diǎn)時(shí),求二面角的平面角的余弦值.
【答案】(1)證明見解析 (2)
【解析】
(1)要證明,只需證明平面,將證線線垂直轉(zhuǎn)化為證線面垂直,即可求得答案;
(2)以為坐標(biāo)原點(diǎn),的方向?yàn)?/span>軸正方向,為單位長,建立如圖所示的空間直角坐標(biāo)系,根據(jù)面面角的向量求法即可求得答案.
(1) 平面,平面,
.
又,且,,平面,
平面,
,平面,
.
(2)由(1)知,即,
為的中點(diǎn),
,得,
,.
以為坐標(biāo)原點(diǎn),的方向?yàn)?/span>軸正方向,為單位長,
建立如圖所示的空間直角坐標(biāo)系.
點(diǎn),,,,
向量,,
設(shè)平面的法向量為,則
即
可取.
設(shè)平面的法向量為,
則即
可取,
,
由題意可知二面角的平面角是鈍角,
二面角的平面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線上動(dòng)點(diǎn)與定點(diǎn)的距離和它到定直線的距離的比是常數(shù).若過的動(dòng)直線與曲線相交于兩點(diǎn).
(1)判斷曲線的名稱并寫出它的標(biāo)準(zhǔn)方程;
(2)是否存在與點(diǎn)不同的定點(diǎn),使得恒成立?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求在上的最值;
(2)若,當(dāng)有兩個(gè)極值點(diǎn)時(shí),總有,求此時(shí)實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用一根長為分米的鐵絲制作一個(gè)長方體框架(由12條棱組成),使得長方體框架的底面長是寬的倍.在制作時(shí)鐵絲恰好全部用完且損耗忽略不計(jì).現(xiàn)設(shè)該框架的底面寬是分米,用表示該長方體框架所占的空間體積(即長方體的體積).
(1)試求函數(shù)的解析式及其定義域;
(2)當(dāng)該框架的底面寬取何值時(shí),長方體框架所占的空間體積最大,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】基于移動(dòng)網(wǎng)絡(luò)技術(shù)的共享單車被稱為“新四大發(fā)明”之一,短時(shí)間內(nèi)就風(fēng)靡全國,給人們帶來新的出行體驗(yàn),某共享單車運(yùn)營公司的市場(chǎng)研究人員為了了解公司的經(jīng)營狀況,對(duì)公司最近6個(gè)月的市場(chǎng)占有率進(jìn)行了統(tǒng)計(jì),結(jié)果如下表:
月份 | 2018.11 | 2018.12 | 2019.01 | 2019.02 | 2019.03 | 2019.04 |
月份代碼 | 1 | 2 | 3 | 4 | 5 | 6 |
11 | 13 | 16 | 15 | 20 | 21 |
(1)請(qǐng)用相關(guān)系數(shù)說明能否用線性回歸模型擬合與月份代碼之間的關(guān)系.如果能,請(qǐng)計(jì)算出關(guān)于的線性回歸方程,如果不能,請(qǐng)說明理由;
(2)根據(jù)調(diào)研數(shù)據(jù),公司決定再采購一批單車擴(kuò)大市場(chǎng),從成本1000元/輛的型車和800元/輛的型車中選購一種,兩款單車使用壽命頻數(shù)如下表:
車型 報(bào)廢年限 | 1年 | 2年 | 3年 | 4年 | 總計(jì) |
10 | 30 | 40 | 20 | 100 | |
15 | 40 | 35 | 10 | 100 |
經(jīng)測(cè)算,平均每輛單車每年能為公司帶來500元的收入,不考慮除采購成本以外的其它成本,假設(shè)每輛單車的使用壽命都是整數(shù)年,用頻率估計(jì)每輛車使用壽命的概率,以平均每輛單車所產(chǎn)生的利潤的估計(jì)值為決策依據(jù),如果你是公司負(fù)責(zé)人,會(huì)選擇哪款車型?
參考數(shù)據(jù):,,,.
參考公式:相關(guān)系數(shù),,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若,求函數(shù)在區(qū)間(其中,是自然對(duì)數(shù)的底數(shù))上的最小值;
(2)若存在與函數(shù),的圖象都相切的直線,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了提高利潤,從2014年至2018年每年對(duì)生產(chǎn)環(huán)節(jié)的改進(jìn)進(jìn)行投資,投資金額與年利潤增長的數(shù)據(jù)如下表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
投資金額x(萬元) | 5 | 5.5 | 6 | 6.5 | 7 |
年利潤增長y(萬元) | 7.5 | 8 | 9 | 10 | 11.5 |
(1)請(qǐng)用最小二乘法求出y關(guān)于x的回歸直線方程;
(2)如果2020年該公司計(jì)劃對(duì)生產(chǎn)環(huán)節(jié)的改進(jìn)的投資金額為8萬元,估計(jì)該公司在該年的年利潤增長為多少?
參考公式:, 參考數(shù)據(jù):,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(I)討論函數(shù)的零點(diǎn)個(gè)數(shù);
(Ⅱ)若曲線在點(diǎn)處的切線經(jīng)過點(diǎn),當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com