14.隨著“銀發(fā)浪潮”的涌來,養(yǎng)老是當下普遍關(guān)注的熱點和難點問題,濟南市創(chuàng)新性的采用“公建民營”的模式,建立標準的“日間照料中心”,既吸引社會力量廣泛參與養(yǎng)老建設,也方便規(guī)范化管理,計劃從中抽取5個中心進行評估,現(xiàn)將所有中心隨機編號,用系統(tǒng)(等距)抽樣的方法抽取,已知抽取到的號碼有5號,23號和29號,則下面號碼中可能被抽到的號碼是( 。
A.9B.12C.15D.17

分析 根據(jù)系統(tǒng)抽樣的定義確定樣本間隔進行求解即可.

解答 解:5號,23號和29號,則樣本間隔為29-23=6,
∴樣本第一個編號為5,11,17,23,29
∴可能被抽到的試室號是17,
故選:D.

點評 本題主要考查系統(tǒng)抽樣的應用,確定樣本間隔是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

4.在平面直角坐標系中,已知點A,B分別為x軸、y軸上的點,且|AB|=1,若點P(1,$\frac{4}{3}})$),則$|{\overrightarrow{AP}+\overrightarrow{BP}+\overrightarrow{OP}}$|的取值范圍是(  )
A.[5,6]B.[5,7]C.[4,6]D.[6,9]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知A、F分別是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左頂點、右焦點,點P為橢圓C上一動點,當PF⊥x軸時,AF=2PF.
(1)求橢圓C的離心率;
(2)若橢圓C存在點Q,使得四邊形AOPQ是平行四邊形(點P在第一象限),求直線AP與OQ的斜率之積;
(3)記圓O:x2+y2=$\frac{ab}{{a}^{2}+^{2}}$為橢圓C的“關(guān)聯(lián)圓”.若b=$\sqrt{3}$,過點P作橢圓C的“關(guān)聯(lián)圓”的兩條切線,切點為M、N,直線MN的橫、縱截距分別為m、n,求證:$\frac{3}{{m}^{2}}$+$\frac{4}{{n}^{2}}$為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.如果I={a,b,c,d,e},M={a,c,d},N={b,d,e},那么(∁IM)∩(∁IN)等于(  )
A.B.825nha5C.{a,c}D.{b,e}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.為加快新能源汽車產(chǎn)業(yè)發(fā)展,推進節(jié)能減排,國家對消費者購買新能源汽車給予補貼,其中對純電動乘用車補貼標準如表:
新能源汽車補貼標準
車輛類型續(xù)駛里程R(公里)
100≤R<180180≤R<280<280
純電動乘用車2.5萬元/輛4萬元/輛6萬元/輛
某校研究性學習小組,從汽車市場上隨機選取了M輛純電動乘用車,根據(jù)其續(xù)駛里程R(單次充電后能行駛的最大里程)作出了頻率與頻數(shù)的統(tǒng)計表:
分組頻數(shù)頻率
100≤R<18030.3
180≤R<2806x
R≥280yz
合計M1
(1)求x、y、z、M的值;
(2)若從這M輛純電動乘用車任選3輛,求選到的3輛車續(xù)駛里程都不低于180公里的概率;
(3)如果以頻率作為概率,若某家庭在某汽車銷售公司購買了2輛純電動乘用車,設該家庭獲得的補貼為X(單位:萬元),求X的分布列和數(shù)學期望值E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.復數(shù)z=i2016+($\frac{1+i}{1-i}$)2017(i是虛數(shù)單位)的共軛復數(shù)$\overline{z}$表示的點在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若函數(shù)f(x)=$\frac{2{e}^{x}}{{e}^{x}+1}$+ln($\sqrt{{x}^{2}+1}$+x)+${∫}_{0}^{x}$cos xdx在區(qū)間[-k,k](k>0)上的值域為[m,n],則m+n的值是(  )
A.0B.2C.4D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.設數(shù)列{an}滿足a1+$\frac{{a}_{2}}{3}$+$\frac{{a}_{3}}{{3}^{2}}$+…+$\frac{{a}_{n}}{{3}^{n-1}}$=n,bn=nlog3a4n+1,n∈N*
(Ⅰ)設數(shù)列{an}、{bn}的通項;
(Ⅱ)設cn=$\frac{1}{_{n}-1}$,求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.若(1-x)9=a0+a1x+a2x2+…+a9x9,則|a1|+|a2|+|a3|+…+|a9|=( 。
A.1B.513C.512D.511

查看答案和解析>>

同步練習冊答案