6.已知p:|1-$\frac{x-1}{3}$|≤2,q:(x-1+m)(x-1-m)<0(m>0)且q是p的必要不充分條件,求實數(shù)m的取值范圍.

分析 分別求出關(guān)于p,q的不等式,根據(jù)q是p的必要不充分條件,得到關(guān)于m的不等式組,解出即可.

解答 解:∵|1-$\frac{x-1}{3}$|≤2,∴p:-2≤x≤10;
∵(x-1+m)(x-1-m)<0,∴q:-m+1<x<m+1,(m>0),
若q是p的必要不充分條件,
則[-2,10]⊆(-m+1,m+1),
故$\left\{\begin{array}{l}{-2>-m+1}\\{10<m+1}\end{array}\right.$,
解得:m>9.

點評 本題考查了充分必要條件,考查解不等式問題,是一道基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

16.一個幾何體的三視圖如圖所示(單位:m),正視圖和俯視圖的上面均是底邊長為12m的等腰直角三角形,下面均是邊長為6m的正方形,則該幾何體的體積為216+72πm3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知銳角△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,若acosB=4csinC-bcosA,則cosC=$\frac{\sqrt{15}}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.在平面直角坐標系xOy中,雙曲線$\frac{x^2}{3}-{y^2}=1$的一條準線與拋物線y2=2px(p>0)的準線重合,則實數(shù)p的值是3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知$\overrightarrow{a}$=(2cosx,sinx-cosx),$\overrightarrow$=($\sqrt{3}$sinx,sinx+cosx),記函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(Ⅰ)求f(x)的表達式,以及f(x)取最大值時x的取值集合;
(Ⅱ)設(shè)△ABC三內(nèi)角A,B,C的對應(yīng)邊分別為a,b,c,若a+b=2$\sqrt{3}$,c=$\sqrt{6}$,f(C)=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知函數(shù)f(x)=$\frac{2}{{2}^{x}+1}$+sinx,則f(-3)+f(-2)+f(-1)+f(0)+f(1)+f(2)+f(3)=7.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.在數(shù)列{an}中,a1=1,${a_n}=1+\frac{{{{(-1)}^n}}}{{{a_{n-1}}}}$(n≥2),則a5=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.若?(p∧q)為假命題,則( 。
A.p為真命題,q為假命題B.p為假命題,q為假命題
C.p為真命題,q為真命題D.p為假命題,q為真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.在四棱錐中P-ABCD,底面ABCD是正方形,側(cè)面PAD⊥底面ABCD,且PA=PD=$\frac{{\sqrt{2}}}{2}$AD、E、F,分別為PC、BD的中點.
(1)求證:EF∥平面PAD;
(2)若AB=2,求三棱錐E-DFC的體積.

查看答案和解析>>

同步練習冊答案