如圖,在四棱錐E—ABCD中,底面ABCD為邊長為5的正方形,AE平面CDE,AE=3.

(1)若的中點,求證:平面;
(2)求直線與平面所成角的正弦值.

(1)詳見解析;(2).

解析試題分析:(1)由的中點,連結(jié)交于,從而得到中點,再由三角形中位線知識得到線線平行,從而得到平面;(2) 過,連結(jié).再根據(jù)已知條件證明平面.與平面的所成角的平面角.再解直角三角形,得到.
試題解析:(1)連結(jié)交于,連 中點,中點,
平面,平面平面.     (6分)
(2)過,連結(jié),               (7分)
平面,平面, ,
, 平面,
平面,平面,,
平面,平面在平面內(nèi)的射影,
與平面的所成角的平面角,又平面為直角三角形,,且,. (12分)
考點:1.線面平行的判定定理;2.線面垂直的判定定理;3.直線與平面所成的角.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,五面體中,四邊形ABCD是矩形,DA面ABEF,且DA=1,AB//EF,,P、Q、M分別為AE、BD、EF的中點.

(1)求證:PQ//平面BCE;
(2)求證:AM平面ADF;
(3)求二面角A-DF-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在四棱錐P-ABCD中,側(cè)面PCD底面ABCD,PDCD,底面ABCD是直角梯形,AB∥DC,ADC-900,AB=AD=PD=1.CD=2.

(I)求證:BC平面PBD:
(II)設(shè)E為側(cè)棱PC上異于端點的一點,,試確定的值,使得二面角
E-BD-P的大小為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖三棱錐中,,是等邊三角形.

(Ⅰ)求證:
(Ⅱ)若二面角 的大小為,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知四棱錐,底面是平行四邊形,點在平面上的射影邊上,且,

(Ⅰ)設(shè)的中點,求異面直線所成角的余弦值;
(Ⅱ)設(shè)點在棱上,且.求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在直三棱柱中,

(Ⅰ)求證:平面;
(Ⅱ)若的中點,求與平面所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900

(1)求證:PC⊥BC;
(2)求點A到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1.

(1)證明:平面A1BD∥平面CD1B1;
(2)求三棱柱ABD-A1B1D1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,直角梯形中,,,,過,垂足為.分別是、的中點.現(xiàn)將沿折起,使二面角的平面角為.

(1)求證:平面平面;
(2)求直線與面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案