復(fù)數(shù)6i7+8i2014(其中i是虛數(shù)單位)在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限
考點(diǎn):復(fù)數(shù)代數(shù)形式的混合運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用i4=1和復(fù)數(shù)的運(yùn)算法則、幾何意義即可得出.
解答: 解:∵i4=1,
∴i7=-i,i2014=(i4503•i2=-1,
∴復(fù)數(shù)6i7+8i2014=-6i-8在復(fù)平面上對(duì)應(yīng)的點(diǎn)(-8,-6)位于第三象限.
故選:C.
點(diǎn)評(píng):本題考查了復(fù)數(shù)的運(yùn)算法則、幾何意義、復(fù)數(shù)的周期性,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}為各項(xiàng)均為1的無(wú)窮數(shù)列,若在數(shù)列{an}的首項(xiàng)a1后面插入1,隔2項(xiàng),即a3后面插入2,再隔3項(xiàng),即a6后面插入3,…這樣得到一個(gè)新數(shù)列{bn},則數(shù)列{bn}的前2010項(xiàng)的和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l經(jīng)過(guò)兩條直線2x+y-8=0和x-2y+1=0的交點(diǎn).
(1)若直線l平行于直線3x-2y+4=0,求直線l的方程;
(2)若直線l垂直于直線4x-3y-7=0,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知高一年級(jí)有學(xué)生450人,高二年級(jí)有學(xué)生750人,高三年級(jí)有學(xué)生600人.用分層抽樣從該校的這三個(gè)年級(jí)中抽取一個(gè)容量為n的樣本,且每個(gè)學(xué)生被抽到的概率為0.02,則應(yīng)從高二年級(jí)抽取的學(xué)生人數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某程序框圖如圖所示,則該程序運(yùn)行后輸出的s值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)
10i
2-i
=x+yi(x∈R,y∈R),則x+y=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的定義域?yàn)閇a,b],且f(a)=f(b),對(duì)于定義域內(nèi)的任意實(shí)數(shù)x1,x2(x1≠x2)都有|f(x1)-f(x2)|<|x1-x2|
(1)設(shè)S=(x+y-3)2+(1-x)2+(6-2y-x)2,當(dāng)且僅當(dāng)x=a,y=b時(shí),S取得最小值,求a,b的值;
(2)在(1)的條件下,證明:對(duì)任意x1,x2∈[a,b],有|f(x1)-f(x2)|<
5
6
成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

邊長(zhǎng)為2的正方形ABCD中,E∈AB,F(xiàn)∈BC
(1)如果E、F分別為AB、BC中點(diǎn),分別將△AED、△DCF、△BEF沿ED、DF、FE折起,使A、B、C重合于點(diǎn)P.證明:在折疊過(guò)程中,A點(diǎn)始終在某個(gè)圓上,并指出圓心和半徑.
(2)如果F為BC的中點(diǎn),E是線段AB上的動(dòng)點(diǎn),沿DE、DF將△AED、△DCF折起,使A、C重合于點(diǎn)P,求三棱錐P-DEF體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=lnx-x2+ax(a∈R).
(Ⅰ) 求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ) 設(shè)g(x)=
x
ex
,若對(duì)于任意給定的x0∈(0,e],方程f(x)+
1
e
=g(x0)
在(0,e]內(nèi)有兩個(gè)不同的實(shí)數(shù)根,求a的取值范圍.(其中e是自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

同步練習(xí)冊(cè)答案