已知{an} 是公差為d的等差數(shù)列,若3a6=a3+a4+a5+6,則d等于


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4
A
分析:由題設(shè)條件建立關(guān)于a3與公差d的方程求d的值.
解答:∵3a6=a3+a4+a5+6
∴3(a3+3d)=a3+(a3+d)+(a3+2d)+6
∴d=1
故選A.
點(diǎn)評(píng):本題考查等差數(shù)列的性質(zhì),熟練掌握相關(guān)知識(shí)可以提高做題效率,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}是公差不為零的等差數(shù)列,Sn是數(shù)列{an}的前n項(xiàng)和.
(I)若a2=1,S5=20,求數(shù)列{an}的通項(xiàng)公式;
(II)設(shè){bn}是等比數(shù)列,滿足b1=a12,b2=a22,b3=a32,求數(shù)列{bn}公比q的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知{an}是公差為-2的等差數(shù)列,a7是a3與a9的等比中項(xiàng),求該數(shù)列前10項(xiàng)和S10
(2)若數(shù)列{bn}滿足b1=
2
3
,bn+1=
2bn
3bn+2
,試求b2013的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}是公差為d的等差數(shù)列,{bn}是公比為q的等比數(shù)列,設(shè)m,n,p,k都是正整數(shù).
(1)求證:若m+n=2p,則am+an=2ap,bmbn=(bp2
(2)若an=3n+1,是否存在m,k,使得am+am+1=ak?請(qǐng)說(shuō)明理由;
(3)求使命題P:“若bn=aqn(a、q為常數(shù),且aq≠0)對(duì)任意m,都存在k,有bmbm+1=bk”成立的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}是公差不為零的等差數(shù)列,a3=5,且a1,a2,a5成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=2an+1,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}是公差為d的等差數(shù)列,它的前n項(xiàng)和為Sn.等比數(shù)列{bn}的前n項(xiàng)和為Tn,且S4=2S2+4,b2=
1
9
T2=
4
9

(Ⅰ)求公差d的值;
(Ⅱ)若對(duì)任意的n∈N*,都有Sn≥S8成立,求a1的取值范圍;
(Ⅲ)若a1=
1
2
,判別方程Sn+Tn=55是否有解?并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案