分析 設(shè)直線l的方程為mx+ny+p=0,分別代入點(diǎn)的坐標(biāo),再根據(jù)c=3a+2b+1,d=a+4b-3,利用斜率,得到m,n,p的關(guān)系,即可求出直線方程.
解答 解:這樣的直線是存在的,
理由如下:設(shè)直線l的方程為mx+ny+p=0,依題意 ma+nb+p=0,①,
m(3a+2b+1)+n(a+4b-3)+p=0,②,
②變?yōu)椋?m+n)a+(2m+4n)b+m-3n+p=0.③,
①、③表示同一條直線,
∴$\frac{3m+n}{m}$=$\frac{2m+4n}{n}$=$\frac{m-3n+p}{p}$.
由前者,3mn+n2=2m2+4mn,即 2m2+mn-n2=0,∴m=-n,或m=$\frac{n}{2}$
把m=-n代入后者,得2=$\frac{-4n+p}{p}$,即p=4n.
把m=$\frac{n}{2}$代入后者,得5=$\frac{-2.5n+p}{p}$,即p=-$\frac{5n}{8}$.
∴l(xiāng)的方程為x-y-4=0,或4x+8y-5=0.
點(diǎn)評 本題考查了直線方程以及直線共線的問題,關(guān)鍵是構(gòu)造方程,利用斜率,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [kπ-$\frac{5}{6}$π,kπ-$\frac{π}{3}$],k∈Z | B. | [kπ-$\frac{1}{3}$π,kπ+$\frac{π}{6}$],k∈Z | ||
C. | [kπ-$\frac{7}{12}$π,kπ-$\frac{π}{12}$],k∈Z | D. | [kπ-$\frac{1}{12}$π,kπ+$\frac{5π}{12}$],k∈Z |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,-6) | B. | (0,7) | C. | (0,-6)或(0,7) | D. | (-6,0)或(7,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com