某市對10000名中學(xué)生的數(shù)學(xué)成績(滿分100分)進(jìn)行抽樣統(tǒng)計,發(fā)現(xiàn)他們近似服從正態(tài)分布N~(70,102),若90分以上者有230人,則這10000名學(xué)生中分?jǐn)?shù)在50分到90分之間的人數(shù)約有( 。
A、7140人B、230人
C、9540人D、4770人
考點(diǎn):正態(tài)分布曲線的特點(diǎn)及曲線所表示的意義
專題:計算題,概率與統(tǒng)計
分析:隨機(jī)變量ξ服從正態(tài)分布N(μ,σ2),那么隨機(jī)變量ξ在區(qū)間(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)內(nèi)取值的概率分別約為0.683,0.954,0.997.
解答: 解:因為利用正態(tài)分布的對稱性可知,某市對10000名中學(xué)生的數(shù)學(xué)成績(滿分100分)進(jìn)行抽樣統(tǒng)計,發(fā)現(xiàn)他們近似服從正態(tài)分布N~(70,102),因為90分以上者有230人,則這10000名學(xué)生中分?jǐn)?shù)在50分到90分之間的人數(shù)約有10000-460=9540人,
故選:C.
點(diǎn)評:若隨機(jī)變量ξ服從正態(tài)分布N(μ,σ2),那么隨機(jī)變量ξ在區(qū)間(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)內(nèi)取值的概率分別約為0.683,0.954,0.997,應(yīng)熟練掌握這幾個概率值,在解決正態(tài)分布問題時,經(jīng)常遇到這類數(shù)值的計算問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若a=
6
-
2
,b=
3
-1,則a,b的大小關(guān)系為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若A(-1,-2),B(4,8),C(x,10),且A、B、C三點(diǎn)共線,則x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,一個四棱錐的主視圖和側(cè)視圖均為直角三角形,俯視圖為矩形,則該四棱錐的四個側(cè)面中,直角三角形的個數(shù)是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正四棱柱ABCD-A1B1C1D1中,AA1=3AB,則異面直線A1B與AD1所成角的余弦值為( 。
A、
1
3
B、
5
10
C、
9
10
D、
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由a1=3,d=2確定的等差數(shù)列{an},當(dāng)an=21時,則項數(shù)n等于( 。
A、9B、12C、11D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓的焦點(diǎn)坐標(biāo)為(-5,0)和(5,0),橢圓上一點(diǎn)與兩焦點(diǎn)的距離和是26,則橢圓的方程為( 。
A、
x2
169
+
y2
144
=1
B、
x2
144
+
y2
169
=1
C、
x2
169
+
y2
25
=1
D、
x2
144
+
y2
25
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
,
b
是任意的非零向量,且相互不共線,則下列真命題的個數(shù)為( 。
①(
a
b
)•
c
-(
c
a
)•
b
=0;②|
a
|+|
b
|>|
a
-
b
|;③|
a
+
b
|•
c
=|
a
c
+
b
c
|;
④對于平面內(nèi)的任意一組向量
a
b
,
c
存在唯一實數(shù)組λ,μ,γ使γ
c
a
b
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x>y>0,則下列不等式正確的是( 。
A、3x<3y
B、
1
x
1
y
C、lnx<lny
D、(
1
4
x>(
1
4
y

查看答案和解析>>

同步練習(xí)冊答案