給定橢圓,稱圓心在原點,半徑為的圓是橢圓C的“準(zhǔn)圓”.若橢圓C的一個焦點為,其短軸上的一個端點到F的距離為.
(Ⅰ)求橢圓C的方程和其“準(zhǔn)圓”方程;
(Ⅱ)點P是橢圓C的“準(zhǔn)圓”上的一個動點,過點P作直線,使得與橢圓C都只有一個交點,且分別交其“準(zhǔn)圓”于點M,N .
(1)當(dāng)P為“準(zhǔn)圓”與軸正半軸的交點時,求的方程;
(2)求證:|MN|為定值.
(I)因為,所以
所以橢圓的方程為,
又=2, 所以準(zhǔn)圓的方程為.
(II)(1)因為準(zhǔn)圓與軸正半軸的交點為P(0,2),
設(shè)過點P(0,2),且與橢圓有一個公共點的直線為,
所以,消去y ,得到 ,
因為橢圓與只有一個公共點, 所以 ,
解得.所以方程為.
(2)①當(dāng)中有一條無斜率時,不妨設(shè)無斜率,
因為與橢圓只有一個公共點,則其方程為或,
當(dāng)方程為時,此時與準(zhǔn)圓交于點,
此時經(jīng)過點(或)且與橢圓只有一個公共點的直線是
(或),即為(或),顯然直線垂直;
同理可證 方程為時,直線垂直.
② 當(dāng)都有斜率時,設(shè)點,其中,
設(shè)經(jīng)過點與橢圓只有一個公共點的直線為,
則,消去得到,
即,
,
經(jīng)過化簡得到:,
因為,所以有,
設(shè)的斜率分別為,因為與橢圓都只有一個公共點,
所以滿足上述方程,
所以,即垂直.
綜合①②知:
因為經(jīng)過點,又分別交其準(zhǔn)圓于點M,N,且垂直,
所以線段MN為準(zhǔn)圓的直徑,所以|MN|=4.
科目:高中數(shù)學(xué) 來源:2010年北京市海淀區(qū)高三第二次模擬考試數(shù)學(xué)(文) 題型:解答題
(本小題滿分13分)
給定橢圓,稱圓心在原點,半徑為的圓是橢圓C的“準(zhǔn)圓”.若橢圓C的一個焦點為,其短軸上的一個端點到F的距離為.
(I)求橢圓C的方程和其“準(zhǔn)圓”方程;
(II )點P是橢圓C的“準(zhǔn)圓”上的一個動點,過點P作直線,使得與橢圓C都只有一個交點,且分別交其“準(zhǔn)圓”于點M,N .
(1)當(dāng)P為“準(zhǔn)圓”與軸正半軸的交點時,求的方程;
(2)求證:|MN|為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)
給定橢圓,稱圓心在原點,半徑為的圓是橢圓C的“準(zhǔn)圓”.若橢圓C的一個焦點為,其短軸上的一個端點到F的距離為.
(Ⅰ)求橢圓C的方程和其“準(zhǔn)圓”方程;
(Ⅱ)點P是橢圓C的“準(zhǔn)圓”上的一個動點,過點P作直線,使得與橢圓C都只有一個交點,且分別交其“準(zhǔn)圓”于點M,N .
(1)當(dāng)P為“準(zhǔn)圓”與軸正半軸的交點時,求的方程;
(2)求證:|MN|為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013年河北省衡水中學(xué)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com