【題目】橢圓的離心率.

(1)求橢圓的方程;

(2)如圖所示,A、B、D是橢圓C的頂點,P是橢圓C上除頂點外的任意一點,直線DPx軸于點N,直線ADBP于點M,設(shè)BP的斜率為k,MN的斜率為m.證明:2m-k為定值.

【答案】(1);(2)

【解析】

(1)由橢圓的離心率結(jié)合性質(zhì) , ,列出關(guān)于 、 、的方程組,求出 、 即可得結(jié)果;(2)設(shè)直線的方程為,與橢圓方程聯(lián)立可得點坐標,直線的方程聯(lián)立,可得點坐標,由三點共線可得點坐標,利用斜率公式變形后即可得結(jié)果.

(1)解 因為e=

所以a=c,b=c.

代入a+b=3得,c=,a=2,b=1.

故橢圓C的方程為+y2=1.

(2)證明 因為B(2,0),點P不為橢圓頂點,

則可設(shè)直線BP的方程為y=k(x-2)(k≠0,k≠±),①

代入+y2=1,解得P.

直線AD的方程為y=x+1.②

聯(lián)立解得M.

D(0,1),P,N(x,0)三點共線知

,解得N.

所以MN的斜率為m=

.

2m-k=-k= (定值).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質(zhì)量(單位:克)分別在,,,,中,經(jīng)統(tǒng)計得頻率分布直方圖如圖所示.

(1)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機抽取6個,再從這6個中隨機抽取3個,求這3個芒果中恰有1個在內(nèi)的概率;

(2)某經(jīng)銷商來收購芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計總體,該種植園中還未摘下的芒果大約還有10000個,經(jīng)銷商提出如下兩種收購方案:

方案:所有芒果以10元/千克收購;

方案:對質(zhì)量低于250克的芒果以2元/個收購,高于或等于250克的以3元/個收購.

通過計算確定種植園選擇哪種方案獲利更多?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在“新零售”模式的背景下,某大型零售公司咪推廣線下分店,計劃在市的區(qū)開設(shè)分店,為了確定在該區(qū)開設(shè)分店的個數(shù),該公司對該市已開設(shè)分店聽其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記表示在各區(qū)開設(shè)分店的個數(shù), 表示這個個分店的年收入之和.

(個)

2

3

4

5

6

(百萬元)

2.5

3

4

4.5

6

(1)該公司已經(jīng)過初步判斷,可用線性回歸模型擬合的關(guān)系,求關(guān)于的線性回歸方程;

(2)假設(shè)該公司在區(qū)獲得的總年利潤(單位:百萬元)與之間的關(guān)系為,請結(jié)合(1)中的線性回歸方程,估算該公司應(yīng)在區(qū)開設(shè)多少個分時,才能使區(qū)平均每個分店的年利潤最大?

(參考公式: ,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4—4:坐標系與參數(shù)方程

平面直角坐標系xOy中,曲線C.直線l經(jīng)過點Pm0),且傾斜角為O為極點,以x軸正半軸為極軸,建立極坐標系.

)寫出曲線C的極坐標方程與直線l的參數(shù)方程;

)若直線l與曲線C相交于AB兩點,且|PA·PB|=1,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.

(1)若a=-2,求B∩A,B∩(UA);(2)A∪B=A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是定義在上的奇函數(shù),且.若對任意的,,都有.

1)判斷函數(shù)的單調(diào)性,并說明理由;

2)若,求實數(shù)的取值范圍;.

3)若不等式對任意都恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△中,,,點邊上,且.

(1)若,求

(2)若,求△的周長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】市某機構(gòu)為了調(diào)查該市市民對我國申辦年足球世界杯的態(tài)度,隨機選取了位市民進行調(diào)查,調(diào)查結(jié)果統(tǒng)計如下:

支持

不支持

合計

男性市民

女性市民

合計

(1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫完整;

(2)利用(1)完成的表格數(shù)據(jù)回答下列問題:

(i)能否在犯錯誤的概率不超過的前提下認為支持申辦足球世界杯與性別有關(guān);

(ii)已知在被調(diào)查的支持申辦足球世界杯的男性市民中有位退休老人,其中位是教師,現(xiàn)從這位退休老人中隨機抽取人,求至多有位老師的概率.

附:,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的奇函數(shù)y=f(x)滿足f(3)=0,且當x>0時,不等式f(x)>﹣xf′(x)恒成立,則函數(shù)g(x)=xf(x)+lg|x+1|的零點的個數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習冊答案