下面給出了四個類比推理:
(1)由“若a,b,c∈R則(ab)c=a(bc)”類比推出“若a,b,c為三個向量則(
a
b
)•
c
=
a
•(
b
c
)”;
(2)“a,b為實數(shù),若a2+b2=0則a=b=0”類比推出“z1,z2為復數(shù),若
z21
+
z22
=0則z1=z2=0
”;
(3)“在平面內(nèi),三角形的兩邊之和大于第三邊”類比推出“在空間中,四面體的任意三個面的面積之和大于第四個面的面積”;
(4)“在平面內(nèi),過不在同一條直線上的三個點有且只有一個圓”類比推出“在空間中,過不在同一個平面上的四個點有且只有一個球”.
上述四個推理中,結(jié)論正確的個數(shù)有(  )
A.1個B.2個C.3個D.4個
(1)由向量的運算可知(
a•
b
)•
c
為與向量
c
共線的向量,而由向量的運算可知
a
•(
b
c
)
與向量
a
共線的向量,方向不同,故錯誤.
(2)在復數(shù)集C中,若z1,z2∈C,z12+z22=0,則可能z1=1且z2=i.故錯誤;
(3)平面中的三角形與空間中的三棱錐是類比對象;故正確.
(4)由圓的性質(zhì)類比推理到球的性質(zhì)由已知“平面內(nèi)不共線的3個點確定一個圓”,我們可類比推理出空間不共面4個點確定一個球,故正確
故選:B.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

平面直角坐標系下直線的方程為Ax+By+C=0(A2+B2≠0),用類比的方法推測空間直角坐標系下平面的方程為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,P是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0,xy≠0)
上的動點,F(xiàn)1、F2是雙曲線的焦點,M是∠F1PF2的平分線上一點,且
F2M
MP
=0
.某同學用以下方法研究|OM|:延長F2M交PF1于點N,可知△PNF2為等腰三角形,且M為F2M的中點,得|OM|=
1
2
|NF1|=…=a
.類似地:P是橢圓
x2
a2
+
y2
b2
=1(a>b>0,xy≠0)
上的動點,F(xiàn)1、F2是橢圓的焦點,M是∠F1PF2的平分線上一點,且
F2M
MP
=0
.則|OM|的取值范圍是 ______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

5男6女共11個小孩做如下游戲:先讓4個小孩(不全是男孩)等距離站在一個圓周的4個位置上,如果相鄰兩個小孩同為男孩或同為女孩,則在他(她)們中間站進一個男孩,否則站進一個女孩,然后讓原來的4個小孩暫時退出,即算一次活動.這種活動按上述規(guī)則繼續(xù)進行,直至圓周上所站的4個小孩都是男孩為止.這樣的活動最多可以進行(  )
A.2次B.3次C.4次D.5次

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知數(shù)列{an}滿足a1=1,an+an+1=(
1
4
)n
(n∈N+),Sn=a1+4a2+42a3+…+4n-1an,類比課本中推導等比數(shù)列前n項和公式的方法,可求得5Sn-4nan=( 。
A.
n
2
B.nC.n+1D.n-1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

我們常用定義解決與圓錐曲線有關的問題.如“設橢圓
x2
a2
+
y2
b2
=1(a>0,b>0)
的左、右焦點分別為F1,F(xiàn)2,過左焦點F1作傾斜角為θ的弦AB,設|F1A|=r1,|F1B|=r2,試證
1
r1
+
1
r2
為定值”.
證明如下:不妨設A在x軸的上方,在△ABC中,由橢圓的定義及余弦定理得,(2a-r12=r12+4c2-4cr1cosθ,∴r1=
b2
a-ccosθ

同理r2=
b2
a-ccos(π-θ)
=
b2
a+ccosθ
,于是
1
r
1
+
1
r
2
=
2a
b2
.請用類似的方法探索:設雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點分別為F1,F(xiàn)2,過左焦點F1作傾斜角為θ的直線與雙曲線右支交于點A,左支交于點B,設|F1A|=r1,|F1B|=r2,是否有類似的結(jié)論成立,請寫出與定值有關的結(jié)論是______..

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

用反證法證明命題“三角形的內(nèi)角至多有一個鈍角”時,假設正確的是( )
A.假設至少有一個鈍角B.假設至少有兩個鈍角
C.假設沒有一個鈍角D.假設沒有一個鈍角或至少有兩個鈍角

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若P=+,Q=+(a≥0),則P,Q的大小關系是(  )
A.P>QB.P=QC.P<QD.由a的取值確定

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

直角三角形的三邊滿足 ,分別以三邊為軸將三角形旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積記為,請比較的大小。

查看答案和解析>>

同步練習冊答案