如圖,在等腰梯形OABC中,A(2,2),B(5,2).直線x=t(t>0)由點O向點C移動,至點C完畢,記掃描梯形時所得直線x=t左側的圖形面積為f(t).試求f(t)的解析式,并畫出y=f(t)的圖象.
由題意知,函數(shù)f(t)的定義域為(0,7],
(1)當t∈(0,2]時,f(t)=
1
2
t2

(2)當t∈(2,5]時,f(t)=2t-2.
(3)當t∈(5,7]時,f(t)=-
1
2
(t-7)2+10

綜上,f(t)=
1
2
t2.t∈(0,2]
2t-2t∈(2,5]
-
1
2
(t-7)2+10,t∈(5,7]

y=f(t)的圖象為:
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

若a=log20.9,b=3-
1
3
,c=(
1
3
1
2
,( 。
A.a(chǎn)>b>cB.a(chǎn)>c>bC.c>b>aD.b>c>a

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)y=ax-3+3(a>0且a≠1)的圖象必經(jīng)過點( 。
A.(3,4)B.(3,3)C.(1,0)D.(2,4)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,公園內(nèi)有一塊邊長為2a的正三角形ABC空地,擬改建成花園,并在其中建一直道DE方便花園管理.設D、E分別在AB、AC上,且DE均分三角形ABC的面積.
(1)設AD=x(x≥a),DE=y,試將y表示為x的函數(shù)關系式;
(2)若DE是灌溉水管,為節(jié)約成本,希望其最短,DE的位置應在哪里?若DE是參觀路線,希望其最長,DE的位置應在哪里?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

心理學家發(fā)現(xiàn),學生的接受能力依賴于老師引入概念和描述問題所用的時間,上課開始時,學生的興趣激增,中間有一段不太長的時間,學生的興趣保持較理想的狀態(tài),隨后學生的注意力開始分散,并趨于穩(wěn)定.分析結果和實驗表明,設提出和講述概念的時間為x(單位:分),學生的接受能力為f(x)(f(x)值越大,表示接受能力越強),
f(x)=
-0.1x2+2.6x+44,0<x≤10
60,10<x≤15
-3x+105,15<x≤25
30,25<x≤40

(1)開講后多少分鐘,學生的接受能力最強?能維持多少時間?
(2)試比較開講后5分鐘、20分鐘、35分鐘,學生的接受能力的大;
(3)若一個數(shù)學難題,需要56的接受能力以及12分鐘時間,老師能否及時在學生一直達到所需接受能力的狀態(tài)下講述完這個難題?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某新興城市擬建設污水處理廠,現(xiàn)有兩個方案:
方案一:建設兩個日處理污水量分別為xl和x2(單位:萬m3/d)的污水廠,且3≤xl≤5,3≤x2≤5.
方案二:建設一個日處理污水量為xl+x2(單位:萬m3/d)的污水廠.
經(jīng)調(diào)研知:
(1)污水處理廠的建設費用P(單位:萬元)與日處理污水量x(單位:萬m3/d)的關系為P=40x2;
(2)每處理1m3的污水所需運行費用Q(單位:元)與日處理污水量x(單位:萬m3/d)的關系為:Q=
0.4(6≤x≤10)
0.6(3≤x≤5)

(I)如果僅考慮建設費用,哪個方案更經(jīng)濟?
(Ⅱ)若xl+x2=8,問:只需運行多少年,方案二的總費用就不超過方案一的總費用?
注:一年以250個工作日計算;總費用=建設費用+運行費用.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某賓館有若干間住房,住宿記錄提供了如下信息:①4月2日全部住滿,一天住宿費收入為3600元;②4月3日有10間房空著,一天住宿費收人為2800元;③該賓館每間房每天收費標準相同.
(1)求該賓館共有多少間住房,每間住房每天收費多少元?
(2)通過市場調(diào)查發(fā)現(xiàn),每個住房每天的定價每增加10元,就會有一個房間空閑;己知該賓館空閑房間每天每間費用10元,有游客居住房間每天每間再增加20元的其他費用,問房價定為多少元時,該賓館一天的利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

,,則(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設函數(shù)f(x)=,若f(m)<f(-m),則實數(shù)m的取值范圍是____________.

查看答案和解析>>

同步練習冊答案