【題目】已知f(x)=lgx+1(1≤x≤100),則g(x)=f2(x)+f(x2)的值域?yàn)椋?/span>
A.[﹣2,7]
B.[2,7]
C.[﹣2,14]
D.[2,14]

【答案】B
【解析】解:由題意得, ,解得1≤x≤10,
∵f(x)=lgx+1(1≤x≤100),
∴g(x)=f2(x)+f(x2)=(lgx+1)2+1+2lgx
=(lgx)2+4lgx+2,1≤x≤10
設(shè)t=lgx,則0≤t≤1,
所以h(t)=t2+4t+2,0≤t≤1
∵h(yuǎn)(t)在[0,1]為增函數(shù),且h(0)=2,h(1)=7
∴h(t)=t2+4t+2(0≤t≤1)值域?yàn)閇2,7],
即g(x)=f2(x)+f(x2)的值域?yàn)閇2,7],
故選B.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)的值域的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最。ù螅⿺(shù),這個(gè)數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實(shí)質(zhì)是相同的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知過(guò)拋物線焦點(diǎn)且傾斜角的直線與拋物線交于點(diǎn) 的面積為

(I)求拋物線的方程;

(II)設(shè)是直線上的一個(gè)動(dòng)點(diǎn),過(guò)作拋物線的切線,切點(diǎn)分別為直線與直線軸的交點(diǎn)分別為點(diǎn)是以為圓心為半徑的圓上任意兩點(diǎn),求最大時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,左頂點(diǎn)為

1)求橢圓的方程;

2)過(guò)點(diǎn)作兩條相互垂直的直線分別與橢圓交于(不同于點(diǎn)的)兩點(diǎn).試判斷直線軸的交點(diǎn)是否為定點(diǎn),若是,求出定點(diǎn)坐標(biāo);若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2|x|﹣1.
(1)證明函數(shù)f(x)是偶函數(shù);
(2)在如圖所示的平面直角坐標(biāo)系中作出函數(shù)f(x)的圖象.并根據(jù)圖象寫出函數(shù)f(x)的單調(diào)區(qū)間;

(3)求函數(shù)f(x)當(dāng)x∈[﹣2,4]時(shí)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年某市街頭開始興起“mobike”、“ofo”等共享單車,這樣的共享單車為很多市民解決了最后一公里的出行難題.然而,這種模式也遇到了一些讓人尷尬的問(wèn)題,比如亂停亂放,或?qū)⒐蚕韱诬囌紴椤八接小钡龋疄榇,某機(jī)構(gòu)就是否支持發(fā)展共享單車隨機(jī)調(diào)查了50人,他們年齡的分布及支持發(fā)展共享單車的人數(shù)統(tǒng)計(jì)如下表:

年齡

受訪人數(shù)

5

6

15

9

10

5

支持發(fā)展共享單車人數(shù)

4

5

12

9

7

3

(Ⅰ)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.1的前提下,認(rèn)為年齡與是否支持發(fā)展共享單車有關(guān)系:

年齡低于35歲

年齡不低于35歲

合計(jì)

支持

不支持

合計(jì)

(Ⅱ)若對(duì)年齡在的被調(diào)查人中隨機(jī)選取兩人,對(duì)年齡在的被調(diào)查人中隨機(jī)選取一人進(jìn)行調(diào)查,求選中的3人中支持發(fā)展共享單車的人數(shù)為2人的概率.

參考數(shù)據(jù):

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式: ,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直角三角形中, , , 為線段上一點(diǎn),且,沿邊上的中線折起到的位置.

(Ⅰ)求證: ;

(Ⅱ)當(dāng)平面平面時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,平面ABDE⊥平面ABC,△ABC是等腰直角三角形,ACBC=4,四邊形ABDE是直角梯形,BDAE,BDBA,BDAE=2,O,M分別為CE,AB的中點(diǎn).

(1)求證:OD∥平面ABC

(2)求直線CD和平面ODM所成角的正弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=,數(shù)列{an}滿足a1=1,an+1f(an)(n∈N*).

(1)證明數(shù)列{}是等差數(shù)列,并求出數(shù)列{an}的通項(xiàng)公式;

(2)記Sna1a2a2a3+…+anan+1,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓)的右焦點(diǎn)為,短軸的一個(gè)端點(diǎn)為,直線交橢圓,兩點(diǎn),若,點(diǎn)到直線的距離等于,則橢圓的焦距長(zhǎng)為()

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案