【題目】如圖,四邊形是梯形.四邊形是矩形.且平面平面,,,,是線段上的動點.
(Ⅰ)試確定點的位置,使平面,并說明理由;
(Ⅱ)在(Ⅰ)的條件下,求平面與平面所成銳二面角的余弦值.
【答案】(1)見解析(2)
【解析】試題分析:(Ⅰ)當(dāng)點是中點時,連結(jié),交于點,連結(jié),根據(jù)中位線可知,即平面;(Ⅱ)以點為原點建立空間直角坐標(biāo)系,分別求兩個平面的法向量,求.
試題解析:(Ⅰ)當(dāng)是線段的中點時,平面,
證明如下:
連接,交于,連接,
由于、分別是、的中點,所以,
由于平面,又不包含于平面,
∴平面.
(Ⅱ)方法一:過點作平面與平面的交線,
∵平面,∴,
過點作于,
∵平面平面,,
∴平面,∴平面平面,
∴平面,
過作于,連接,則直線平面,∴,
設(shè),則,,,則,
∴,
∴所求二面角的余弦值為.
方法二:
∵平面平面,,
∴平面,可知、、兩兩垂直,
分別以、、的方向為,,軸,
建立空間直角坐標(biāo)系.
設(shè),則,,,,
設(shè)平面的法向量,
則,∴,
令,得平面的一個法向量,
取平面的法向量,
由,
∴平面與平面所成銳二面角的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對一批底部周長屬于[80,130](單位:cm)的樹木進(jìn)行研究,從中隨機抽出200株樹木并測出其底部周長,得到頻率分布直方圖如圖所示,由此估計,這批樹木的底部周長的眾數(shù)是cm,中位數(shù)是cm,平均數(shù)是cm.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)當(dāng)時,求函數(shù)的極值;
(Ⅱ)當(dāng)時,討論函數(shù)單調(diào)性;
(Ⅲ)是否存在實數(shù),對任意的, ,且,有恒成立?若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中,角,,所對的邊分別是,,,且點,,動點滿足(為常數(shù)且),動點的軌跡為曲線.
(Ⅰ)試求曲線的方程;
(Ⅱ)當(dāng)時,過定點的直線與曲線交于,兩點,是曲線上不同于,的動點,試求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=2sin(2x+ ),g(x)=mcos(2x﹣ )﹣2m+3(m>0),若對任意x1∈[0, ],存在x2∈[0, ],使得g(x1)=f(x2)成立,則實數(shù)m的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓與圓: 相切,且與圓: 相內(nèi)切,記圓心的軌跡為曲線.設(shè)為曲線上的一個不在軸上的動點, 為坐標(biāo)原點,過點作的平行線交曲線于, 兩個不同的點.
(Ⅰ)求曲線的方程;
(Ⅱ)試探究和的比值能否為一個常數(shù)?若能,求出這個常數(shù),若不能,請說明理由;
(Ⅲ)記的面積為, 的面積為,令,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的短軸長為,右焦點為,點是橢圓上異于左、右頂點的一點.
(1)求橢圓的方程;
(2)若直線與直線交于點,線段的中點為,證明:點關(guān)于直線的對稱點在直線上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com