已知(1-2x)5=a+a1x+a2x2+a3x3+a4x4+a5x5,則a1+a2+a3+a4+a5=   
【答案】分析:在所給的式子中,令x=0可得 a=1.再令x=1可得a+a1+a2+a3+a4+a5=-1,由此求得a1+a2+a3+a4+a5的值.
解答:解:在(1-2x)5=a+a1x+a2x2+a3x3+a4x4+a5x5 中,令x=0可得 a=1.
再令x=1可得a+a1+a2+a3+a4+a5=-1,故a1+a2+a3+a4+a5=-2,
故答案為-2.
點評:本題主要考查二項式定理的應用,是給變量賦值的問題,關鍵是根據(jù)要求的結果,選擇合適的數(shù)值代入,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

7、已知(3-2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,
則(1)a1+a2+a3+a4+a5的值為
-242

(2)|a1|+|a2|+|a3|+|a4|+|a5|=
2882

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知(1-2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,則a1+a2+a3+a4+a5=
-2
-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知(1-2x)5=an+a1x+a2x2…+a5x5,求值:
(1)a0;
(2)a1+a2+…+a5
(3)a0+a2+a4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知(1-2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,則a1+a2+a3+a4+a5=______.

查看答案和解析>>

同步練習冊答案