【題目】已知等比數(shù)列{an}中a1=3,其前n項(xiàng)和Sn滿足Sn=pan+1 (p為非零實(shí)數(shù))
(1)求p值及數(shù)列{an}的通項(xiàng)公式;
(2)設(shè){bn}是公差為3的等差數(shù)列,b1=1.現(xiàn)將數(shù)列{an}中的ab1 , ab2 , …abn…抽去,余下項(xiàng)按原有順序組成一新數(shù)列{cn},試求數(shù)列{cn}的前n項(xiàng)和Tn

【答案】
(1)解:依題意,等比數(shù)列{an}的公比q≠1,則Sn= = ,

∴a1﹣an+1=(1﹣q)(pan+1 ),

整理得:a1=﹣ (1﹣q)、p(q﹣1)=1,

又∵a1=3,

∴q=3,p= ,

∴數(shù)列{an}的通項(xiàng)公式an=3n;


(2)解:∵數(shù)列{bn}是公差為3的等差數(shù)列、b1=1,

∴bn=1+3(n﹣1)=3n﹣2,

記dn= ,則dn=33n2=327n1

即數(shù)列{dn}是首項(xiàng)為3、公比為27的等比數(shù)列,

∴Tn=Sn﹣D( )= 3n+1 + 27m= 3n+1 27m

其中( )表示 的整數(shù)部分且記為m,D(n)表示數(shù)列{dn}的前n項(xiàng)和


【解析】(1)通過等比數(shù)列的求和公式及Sn=pan+1 可知q=3、p= ,進(jìn)而計(jì)算可得結(jié)論;(2)通過記dn= 可知dn=327n1 , 進(jìn)而利用等比數(shù)列的求和公式計(jì)算即得結(jié)論.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解數(shù)列的前n項(xiàng)和的相關(guān)知識(shí),掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)酒杯的軸截面是一條拋物線的一部分,它的方程是x2=2y,y∈[0,10],在杯內(nèi)放入一個(gè)清潔球,要求清潔球能擦凈酒杯的最底部(如圖),則清潔球的最大半徑為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的首項(xiàng)為a1=1,且 ,(n∈N*).
(1)求a2 , a3的值,并證明:a2n1<a2n+1<2;
(2)令bn=|a2n1﹣2|,Sn=b1+b2+…+bn . 證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于定義在R上的函數(shù)f(x),如果存在實(shí)數(shù)a,使得f(a+x)f(a﹣x)=1對(duì)任意實(shí)數(shù)x∈R恒成立,則稱f(x)為關(guān)于a的“倒函數(shù)”.已知定義在R上的函數(shù)f(x)是關(guān)于0和1的“倒函數(shù)”,且當(dāng)x∈[0,1]時(shí),f(x)的取值范圍為[1,2],則當(dāng)x∈[1,2]時(shí),f(x)的取值范圍為 , 當(dāng)x∈[﹣2016,2016]時(shí),f(x)的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè){an}是等比數(shù)列,下列結(jié)論中正確的是(
A.若a1+a2>0,則a2+a3>0
B.若a1+a3<0,則a1+a2<0
C.若0<a1<a2 , 則2a2<a1+a3
D.若a1<0,則(a2﹣a1)(a2﹣a3)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,關(guān)于x的方程f2(x)﹣2af(x)+a﹣1=0(a∈R)有四個(gè)相異的實(shí)數(shù)根,則a的取值范圍是(
A.(﹣1,
B.(1,+∞)
C.( ,2)
D.( ,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+ax+1,g(x)=ex(其中e為自然對(duì)數(shù)的底數(shù)). (Ⅰ)若a=1,求函數(shù)y=f(x)g(x)在區(qū)間[﹣2,0]上的最大值;
(Ⅱ)若a=﹣1,關(guān)于x的方程f(x)=kg(x)有且僅有一個(gè)根,求實(shí)數(shù)k的取值范圍;
(Ⅲ)若對(duì)任意的x1 , x2∈[0,2],x1≠x2 , 不等式|f(x1)﹣f(x2)|<|g(x1)﹣g(x2)|均成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知sin2 +cos2A=
(1)求A的值;
(2)若a= ,求bc的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P﹣ABC中,平面PAB⊥平面ABC,AP⊥BP,AC⊥BC,∠PAB=60°,∠ABC=45°,D是AB中點(diǎn),E,F(xiàn)分別為PD,PC的中點(diǎn).
(Ⅰ)求證:AE⊥平面PCD;
(Ⅱ)求二面角B﹣PA﹣C的余弦值;
(Ⅲ)在棱PB上是否存在點(diǎn)M,使得CM∥平面AEF?若存在,求 的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案