設(shè)表示等比數(shù)列的前n項和,已知,則            .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}的公比q≠1,Sn表示數(shù)列{an}的前n項的和,Tn表示數(shù)列{an}的前n項的乘積,Tn(k)表示{an}的前n項中除去第k項后剩余的n-1項的乘積,即Tn(k)=
Tn
ak
(n,k∈N+,k≤n),則數(shù)列
SnTn
Tn(1)+Tn(2)+…+Tn(n)
的前n項的和是
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
(用a1和q表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)設(shè)等差數(shù)列{an}的前n項的和為Sn,已知a3=12,S12>0,S13<0,指出S1,S2,…,S12中哪一個值最大,并說明理由.
(2)等比數(shù)列{an}的首項a1=1536,公比q=
12
,用Tn表示它的前n項之積,則Tn取得最大值時n的值為多少?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}的公比q≠1,Sn表示數(shù)列{an}的前n項的和,Tn表示數(shù)列{an}的前n項的乘積,Tn(k)表示{an}的前n項中除去第k項后剩余的n-1項的乘積,即Tn(k)=
Tn
ak
(n,k∈N*,k≤n),則當(dāng)a1=1,q=2,數(shù)列{
SnTn
Tn(1)+Tn(2)+…+Tn(n)
}的前n項的和是
2n-1
2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,Sn=
a1(1-qn)1-q
(a1,q∈R,a1≠0,q≠1)

(1)求證:數(shù)列{an}是等比數(shù)列;
(2)若q∈N*,是否存在q的某些取值,使數(shù)列{an}中某一項能表示為另外三項之和?若能求出q的全部取值集合,若不能說明理由.
(3)若q∈R,是否存在q∈[3,+∞),使數(shù)列{an}中,某一項可以表示為另外三項之和?若存在指出q的一個取值,若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案