14.正方體ABCD-A1B1C1D1中,AC1與平面BCC1B1所成角的余弦值為$\frac{\sqrt{6}}{3}$.

分析 由AB⊥平面BCC1B1,知∠AC1B是AC1與平面BCC1B1所成角,由此能求出AC1與平面BCC1B1所成角的余弦值.

解答 解:正方體ABCD-A1B1C1D1中,
∵AB⊥平面BCC1B1,
∴∠AC1B是AC1與平面BCC1B1所成角,
設(shè)正方體ABCD-A1B1C1D1中棱長為1,
則BC1=$\sqrt{{1}^{2}+{1}^{2}}$=$\sqrt{2}$,AC1=$\sqrt{{1}^{2}+{1}^{2}+{1}^{2}}$=$\sqrt{3}$,
∴cos∠AC1B=$\frac{B{C}_{1}}{A{C}_{1}}$=$\frac{\sqrt{2}}{\sqrt{3}}$=$\frac{\sqrt{6}}{3}$.
∴AC1與平面BCC1B1所成角的余弦值為$\frac{\sqrt{6}}{3}$.
故答案為:$\frac{\sqrt{6}}{3}$.

點評 本題考查線面角的余弦值的求法;考查邏輯推理與空間想象能力,運算求解能力;考查數(shù)形結(jié)合、化歸轉(zhuǎn)化思想.是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=-x2+2|x-a|,x∈R.
(1)若函數(shù)f(x)為偶函數(shù),求實數(shù)a的值;
(2)當(dāng)x=-1時,函數(shù)f(x)在x=-1取得最大值,求實數(shù)a的取值范圍.
(3)若函數(shù)f(x)有三個零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.過雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點F作x軸的垂線,交雙曲線C于M,N兩點,A為左頂點,設(shè)∠MAN=θ,雙曲線C的離心力為f(θ),則f($\frac{2π}{3}$)-f($\frac{π}{3}$)=$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的一條漸近線方程為y=$\sqrt{3}$x,則雙曲線的離心率為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.從參加高二年級期中考試的學(xué)生中隨機抽取60名學(xué)生,將其英語成績分成六段[40,50),[50,60),…,[90,100)后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(1)求分數(shù)在[70,80)內(nèi)的頻率,并補全這個頻率分布直方圖;
(2)根據(jù)補充完整頻率分布直方圖估計出本次考試的平均分數(shù)、中位數(shù);(小數(shù)點后保留一位有效數(shù)字)
(3)用分層抽樣的方法在各分數(shù)段的學(xué)生中抽取一個容量為20的樣本,則各分數(shù)段抽取的人數(shù)分別是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.命題p:?x∈R,ex≥1,寫出命題p的否定:?x∈R,ex<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.雙曲線C:$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1的左右焦點分別為F1,F(xiàn)2,若雙曲線上一點P滿足|PF2|=7,則△F1PF2的周長等于(  )
A.16B.18C.30D.18或30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知定義在R上的偶函數(shù)f(x)在[0,+∞)上是減函數(shù),且f(2)=0,若f(lnx)>0,則x的取值范圍是$(\frac{1}{{e}^{2}},{e}^{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x),φ(x)滿足關(guān)系φ(x)=f(x)•f(x+α)(其中α是常數(shù)).
(1)如果α=1,f(x)=2x-1,求函數(shù)φ(x)的值域;
(2)如果α=$\frac{π}{2}$,f(x)=sinx,且對任意x∈R,存在x1,x2∈R,使得φ(x1)≤φ(x)≤φ(x2)恒成立,求|x1-x2|的最小值;
(3)如果f(x)=Asin(ωx+ϕ)(A>0,ω>0),求函數(shù)φ(x)的最小正周期(只需寫出結(jié)論).

查看答案和解析>>

同步練習(xí)冊答案