給出定義:在數(shù)列{an}中,都有
a2n
-
a2n-1
=p(n≥2,    n∈N*)
( p為常數(shù)),則稱{an}為“等方差數(shù)列”.下列是對(duì)“等方差數(shù)列”的判斷:
(1)數(shù)列{an}是等方差數(shù)列,則數(shù)列{
a2n
}
是等差數(shù)列;
(2)數(shù)列{(-1)n}是等方差數(shù)列;
(3)若數(shù)列{an}既是等方差數(shù)列,又是等差數(shù)列,則該數(shù)列必為常數(shù)數(shù)列;
(4)若數(shù)列{an}是等方差數(shù)列,則數(shù)列{akn}( k∈N*,k為常數(shù))也是等方差數(shù)列.
其中正確命題序號(hào)為______.
(1)若數(shù)列{an}是等方差數(shù)列,則有
a2n
-
a2n-1
=p(n≥2,    n∈N*)
,則數(shù)列{
a2n
}
是公差為p的等差數(shù)列,所以(1)正確.
(2)若數(shù)列為{(-1)n}是,則an2-an-12=1n-1n=0,所以數(shù)列{(-1)n}是等方差數(shù)列,所以(2)正確.
(3)若數(shù)列{an}是等方差數(shù)列,則an2-an-12=p,即(an-an-1)(an+an-1)=p,
因?yàn)閧an}是等差數(shù)列,所以an-an-1=d,所以(an+an-1)d=p,
1°當(dāng)d=0時(shí),數(shù)列{an}是常數(shù)列.
2°當(dāng)d≠0時(shí),an=
d
2
+
p
2d
,所以數(shù)列{an}是常數(shù)列,綜上數(shù)列{an}是常數(shù)列,所以(3)正確.
(4)數(shù)列{an}中的項(xiàng)列舉出來是,a1,a2,…,ak,…,a2k,…
數(shù)列{akn}中的項(xiàng)列舉出來是,ak,a2k,…,a3k,…,
因?yàn)椋╝k+12-ak2)=(ak+22-ak+12)=(ak+32-ak+22)=…=(a2k2-a2k-12)=p
所以(ak+12-ak2)+(ak+22-ak+12)+(ak+32-ak+22)+…+(a2k2-a2k-12)=kp
所以(akn+12-akn2)=kp
所以{akn}(k∈N*,k為常數(shù))是等方差數(shù)列.
故答案為:(1)(2)(3)(4).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出函數(shù)封閉的定義:若對(duì)于定義域D內(nèi)的任意一個(gè)自變量x0,都有函數(shù)值f(x0)∈D,稱函數(shù)y=f(x)在D上封閉.
(1)若定義域D1=(0,1),判斷函數(shù)g(x)=2x-1是否在D1上封閉,并說明理由;
(2)若定義域D2=(1,5],是否存在實(shí)數(shù)a,使得函數(shù)f(x)=
5x-ax+2
在D2上封閉?若存在,求出a的取值范圍;若不存在,請(qǐng)說明理由.
(3)利用(2)中函數(shù),構(gòu)造一個(gè)數(shù)列{xn},方法如下:對(duì)于給定的定義域D2=(1,5]中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述構(gòu)造數(shù)列的過程中,如果xi(i=1,2,3,4…)在定義域中,構(gòu)造數(shù)列的過程將繼續(xù)下去;如果xi不在定義域中,則構(gòu)造數(shù)列的過程停止.
①如果可以用上述方法構(gòu)造出一個(gè)無窮常數(shù)列{xn},求實(shí)數(shù)a的取值范圍.
②如果取定義域中任一值作為x1,都可以用上述方法構(gòu)造出一個(gè)無窮數(shù)列{xn},求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•閔行區(qū)二模)給出下列四個(gè)命題:
①如果復(fù)數(shù)z滿足|z+i|+|z-i|=2,則復(fù)數(shù)z在復(fù)平面的對(duì)應(yīng)點(diǎn)的軌跡是橢圓.
②若對(duì)任意的n∈N*,(an+1-an-1)(an+1-2an)=0恒成立,則數(shù)列{an}是等差數(shù)列或等比數(shù)列.
③設(shè)f(x)是定義在R上的函數(shù),且對(duì)任意的x∈R,|f(x)|=|f(-x)|恒成立,則f(x)是R上的奇函數(shù)或偶函數(shù).
④已知曲線C:
x2
9
-
y2
16
=1
和兩定點(diǎn)E(-5,0)、F(5,0),若P(x,y)是C上的動(dòng)點(diǎn),則||PE|-|PF||<6.
上述命題中錯(cuò)誤的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
(1)已知函數(shù)f(x)=
1
2
x2   x≤2
log2(x+a)  x>2
在定義域內(nèi)是連續(xù)函數(shù),數(shù)列{an}通項(xiàng)公式為an=
1
an
,則數(shù)列{an}的所有項(xiàng)之和為1.
(2)過點(diǎn)P(3,3)與曲線(x-2)2-
(y-1)2
4
=1有唯一公共點(diǎn)的直線有且只有兩條.
(3)向量
a
=(x2,x+1)
,
b
=(1-x,t)
,若函數(shù)f(x)=
a
b
在區(qū)間[-1,1]上是增函數(shù),則實(shí)數(shù)t的取值范圍是(5,+∞);
(4)我們定義非空集合A的真子集的真子集為A的“孫集”,則集合{2,4,6,8,10}的“孫集”有26個(gè).
其中正確的命題有
(1)(2)(4)
(1)(2)(4)
(填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東省文登市高三上學(xué)期期中統(tǒng)考理科數(shù)學(xué)試卷(解析版) 題型:選擇題

給出下列四個(gè)命題,其錯(cuò)誤的是(     )

①已知是等比數(shù)列的公比,則“數(shù)列是遞增數(shù)列”是“”的既不充分也不必要條件;

②若定義在上的函數(shù)是奇函數(shù),則對(duì)定義域內(nèi)的任意必有;

③若存在正常數(shù)滿足,則的一個(gè)正周期為;

④函數(shù)圖像關(guān)于對(duì)稱.

A.②④                   B.④                    C.③                  D.③④

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆安徽省六校教育研究會(huì)高二素質(zhì)測(cè)試?yán)砜茢?shù)學(xué) 題型:填空題

給出下列命題:

①.在等差數(shù)列,且 ,則使數(shù)列前n項(xiàng)和 取最小值的n等于5;

的外接圓的圓心為O,半徑為1,,且,則向量

在向量方向上的投影為;                                                                                   

 

③ 函數(shù)的值域是集合A,則函數(shù)的值域也是集合A;

④直線的傾斜角是;

⑤若定義在區(qū)間D上的函數(shù)對(duì)于D上任意n個(gè)值總滿足,則稱為D上的凸函數(shù),現(xiàn)已知

 

上凸函數(shù),則銳角三角形△ABC中的最大值為

。其中正確命題的序號(hào)是_______。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案