已知x,y滿足不等式組
x+2y≤8
2x+y≤8
x≥0
y≥0
,則目標函數(shù)z=3x+y的最大值為( 。
A、12
B、24
C、8
D、
32
3
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出題中不等式組表示的平面區(qū)域,得如圖的四邊形OABC及其內(nèi)部,再將目標函數(shù)z=2x+y對應(yīng)的直線進行平移,可得當x=4,y=0時,z=3x+y取得最大值為12.
解答: 解:作出不等式組
x+2y≤8
2x+y≤8
x≥0
y≥0
表示的平面區(qū)域,
得到如圖的四邊形OABC及其內(nèi)部,
其中O(0,0),A(4,0),B(
8
3
,
8
3
),C(0,8)
設(shè)z=F(x,y)=3x+y,將直線l:z=3x+y進行平移,
當l經(jīng)過點A時,目標函數(shù)z達到最大值
∴z最大值=F(4,0)=12
故選:A.
點評:本題給出二元一次不等式組,求目標函數(shù)z=3x+y的最大值,著重考查了二元一次不等式組表示的平面區(qū)域和簡單的線性規(guī)劃等知識,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)滿足f(0)=f(4),且f(x)=0的兩根平方和為10,圖象過點(0,3),求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列算式正確的是( 。
A、26+22=28
B、26-22=24
C、26×22=28
D、26÷22=23

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:?x<0,x2>0,那么¬p是( 。
A、?x≥0,x2≤0
B、?x≥0,x2≤0
C、?x<0,x2≤0
D、?x≥0,x2≤0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={x|2x≥1},N={x||x|≤2},則M∪N=( 。
A、[1,2]
B、[-2,+∞)
C、[0,2]
D、(0,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-x,f′(x)為其導函數(shù).
(1)設(shè)g(x)=lnx-f′(x)f(x),求g(x)的最大值及相應(yīng)的x的值;
(2)對任意正數(shù)x,恒有f(x)+f(
1
x
)≥(x+
1
x
)•lnm,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題正確的是( 。
A、若直線a與平面α不平行,則直線a與平面α內(nèi)的所有直線都不平行
B、如果兩條直線在平面α內(nèi)的射影平行,那么這兩條直線平行
C、垂直于同一直線的兩個不同平面平行,垂直于同一平面的兩條不同直線也平行
D、直線a與平面α不垂直,則直線a與平面α內(nèi)的所有直線都不垂直

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列的各項分別是:
1
1×2
,
1
2×3
1
3×4
,…,
1
n×(n+1)
,
它的前n項和為Sn
(1)計算:S1,S2,S3,由此猜想Sn的表達式;
(2)用數(shù)學歸納法證明(1)得到的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
a
x
+lnx(a∈R)
(Ⅰ)當a=1時,求f(x)的最小值;
(Ⅱ)若f(x)在(0,e]上的最小值為2,求實數(shù)a的值;
(Ⅲ)當a=-1時,試判斷函數(shù)g(x)=f(x)+
lnx
x
在其定義域內(nèi)的零點的個數(shù).

查看答案和解析>>

同步練習冊答案