9.在統(tǒng)計學中,偏差是指個別測定值與測定的平均值之差,在成績統(tǒng)計中,我們把某個同學的某科考試成績與該科班平均分的差叫某科偏差,班主任為了了解個別學生的偏科情況,對學生數(shù)學偏差x(單位:分)與物理偏差y(單位:分)之間的關系進行學科偏差分析,決定從全班56位同學中隨機抽取一個容量為8的樣本進行分析,得到他們的兩科成績偏差數(shù)據(jù)如下:
學生序號12345678
數(shù)學偏差x20151332-5-10-18
物理偏差y6.53.53.51.50.5-0.5-2.5-3.5
(1)已知x與y之間具有線性相關關系,求y關于x的線性回歸方程;
(2)若這次考試該班數(shù)學平均分為118分,物理平均分為90.5,試預測數(shù)學成績126分的同學的物理成績.
參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}$x,
參考數(shù)據(jù):$\sum_{i=1}^8{{x_i}{y_i}}$=324,$\sum_{i=1}^8{x_i^2}$=1256.

分析 (1)由題意,計算平均數(shù)和回歸系數(shù),寫出線性回歸方程;
(2)由題意,設出該同學的物理成績,寫出物理偏差和數(shù)學偏差,
利用回歸服從求出這位同學的物理成績.

解答 解:(1)由題意,計算$\overline x=\frac{{20+15+13+3+2+({-5})+({-10})+({-18})}}{8}=\frac{5}{2}$,
$\overline y=\frac{{6.5+3.5+1.5+0.5+({-0.5})+({-2.5})+({-3.5})}}{8}=\frac{9}{8}$,
回歸系數(shù)$\hat b=\frac{{\sum_{i=1}^8{{x_i}{y_i}-n\overline{xy}}}}{{{{\sum_{i=1}^8{x_i^2-n\overline x}}^2}}}=\frac{{324-8×\frac{5}{2}×\frac{9}{8}}}{{1256-8×{{({\frac{5}{2}})}^2}}}=\frac{1}{4}$,
所以$\hat a=\overline y-\hat b\overline x=\frac{9}{8}-\frac{1}{4}×\frac{5}{2}=\frac{1}{2}$,
所以線性回歸方程為$\hat y=\frac{1}{4}x+\frac{1}{2}$;
(2)由題意,設該同學的物理成績?yōu)棣兀?br />則物理偏差為:ω-90.5;
而數(shù)學偏差為126-118=8,
則(Ⅰ)的結論可得,$ω-90.5=\frac{1}{4}×8+\frac{1}{2}$,解得ω=93,
所以,可以預測這位同學的物理成績?yōu)?3分.

點評 本題考查了線性回歸方程的求法和應用問題,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.某校為了解校園安全教育系列活動的成效,對全校學生進行一次安全意識測試,根據(jù)測試成績評定“合格”、“不合格”兩個等級,同時對相應等級進行量化:“合格”記5分,“不合格”記為0分.現(xiàn)隨機抽取部分學生的答卷,統(tǒng)計結果及對應的頻率分布直方圖如下所示.
等級不合格合格
得分[20,40)[40,60)[60,80)[80,100]
頻數(shù)6a24b
(Ⅰ)求a,b,c的值;
(Ⅱ)用分層抽樣的方法,從評定等級為“合格”和“不合格”的學生中選取5人進行座談.現(xiàn)再從這5人中任選2人,求這兩人都合格的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知向量$\overrightarrow a、\overrightarrow b、\overrightarrow c$是空間的一個單位正交基底,向量$\overrightarrow a+\overrightarrow b、\overrightarrow a-\overrightarrow b、\overrightarrow c$是空間的另一組基底,若向量$\overrightarrow p$在基底$\overrightarrow a、\overrightarrow b、\overrightarrow c$下的坐標是(1,3,4),求向量$\overrightarrow p$在基底$\overrightarrow a+\overrightarrow b、\overrightarrow a-\overrightarrow b、\overrightarrow c$下的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若|x-s|<t,|y-s|<t,則下列不等式中一定成立的是( 。
A.|x-y|<2tB.|x-y|<tC.|x-y|>2tD.|x-y|>t

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知圓C經過(2,4)、(1,3),圓心C在直線x-y+1=0上,過點A(0,1),且斜率為k的直線l交圓相交于M、N兩點.
(Ⅰ)求圓C的方程;
(Ⅱ)(i)請問$\overrightarrow{AM}•\overrightarrow{AN}$是否為定值.若是,請求出該定值,若不是,請說明理由;
(ii)若O為坐標原點,且$\overrightarrow{OM}•\overrightarrow{ON}=12$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,圓O是一半徑為10米的圓形草坪,為了滿足周邊市民跳廣場舞的需要,現(xiàn)規(guī)劃在草坪上建一個廣場,廣場形狀如圖中虛線部分所示的曲邊四邊形,其中A,B兩點在⊙O上,A,B,C,D恰是一個正方形的四個頂點.根據(jù)規(guī)劃要求,在A,B,C,D四點處安裝四盞照明設備,從圓心O點出發(fā),在地下鋪設4條到A,B,C,D四點線路OA,OB,OC,OD.
(1)若正方形邊長為10米,求廣場的面積;
(2)求鋪設的4條線路OA,OB,OC,OD總長度的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的左,右焦點分別是F1,F(xiàn)2,點P在雙曲線上,且滿足∠PF2F1=2∠PF1F2=60°,則此雙曲線的離心率等于(  )
A.2$\sqrt{3}$-2B.$\frac{\sqrt{3}+1}{2}$C.$\sqrt{3}$+1D.2$\sqrt{3}$+2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.執(zhí)行如圖所示的程序框圖,若輸入a=5,b=2,則輸出n的值為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知函數(shù)f(x)=e|ln2x|-|x-$\frac{1}{4x}$|,若f(x1)=f(x2)且x1≠x2,則下面結論正確的是( 。
A.x1+x2-1>0B.x1+x2-1<0C.x2-x1>0D.x2-x1<0

查看答案和解析>>

同步練習冊答案