【題目】已知公差不為0的等差數(shù)列的前三項和為6,且成等比數(shù)列.
(1)求數(shù)列的通項公式;
(2)設(shè),數(shù)列的前項和為,求使的的最大值.
【答案】(1).(2)13.
【解析】試題分析:(1)根據(jù)等差數(shù)列的前三項和為6,且成等比數(shù)列列出關(guān)于首項、公差的方程組,解方程組可得與的值,從而可得數(shù)列的通項公式;(2)由(1)可得,利用裂項相消法求和后,解不等式即可得結(jié)果.
試題解析:(1)設(shè)等差數(shù)列的首項為,公差為,依題意有,
即,
由,解得,所以.
(2)由(1)可得,
所以.
解,得,
所以的最大值為13.
【方法點晴】本題主要考查等差數(shù)列、等比數(shù)列的綜合運用以及裂項相消法求和,屬于中檔題.裂項相消法是最難把握的求和方法之一,其原因是有時很難找到裂項的方向,突破這一難點的方法是根據(jù)式子的結(jié)構(gòu)特點,掌握一些常見的裂項技巧:①;②
;③;
④ ;此外,需注意裂項之后相消的過程中容易出現(xiàn)丟項或多項的問題,導(dǎo)致計算結(jié)果錯誤.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax(a>0且a≠1)的圖象經(jīng)過點(2, ).
(1)比較f(2)與f(b2+2)的大。
(2)求函數(shù)g(x)=a (x≥0)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線上有一個動點,過點作直線垂直于軸,動點在上,且滿足(為坐標原點),記點的軌跡為.
(I)求曲線的方程;
(II)若直線是曲線的一條切線,當點到直線的距離最短時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的不等式 >1+ (其中k∈R,k≠0).
(1)若x=3在上述不等式的解集中,試確定k的取值范圍;
(2)若k>1時,上述不等式的解集是x∈(3,+∞),求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性及極值;
(Ⅱ)若不等式在內(nèi)恒成立,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知E、F、G、H為空間四邊形ABCD的邊AB、BC、CD、DA上的點,且EH∥FG.求證:
(1)EH∥面BCD;
(2)EH∥BD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如今我們的互聯(lián)網(wǎng)生活日益豐富,除了可以很方便地網(wǎng)購,網(wǎng)上叫外賣也開始成為不少人日常生活中不可或缺的一部分.為了解網(wǎng)絡(luò)外賣在市的普及情況, 市某調(diào)查機構(gòu)借助網(wǎng)絡(luò)進行了關(guān)于網(wǎng)絡(luò)外賣的問卷調(diào)查,并從參與調(diào)查的網(wǎng)民中抽取了200人進行抽樣分析,得到表格:(單位:人)
經(jīng)常使用網(wǎng)絡(luò)外賣 | 偶爾或不用網(wǎng)絡(luò)外賣 | 合計 | |
男性 | 50 | 50 | 100 |
女性 | 60 | 40 | 100 |
合計 | 110 | 90 | 200 |
(1)根據(jù)表中數(shù)據(jù),能否在犯錯誤的概率不超過的前提下認為市使用網(wǎng)絡(luò)外賣的情況與性別有關(guān)?
(2)①現(xiàn)從所抽取的女網(wǎng)民中利用分層抽樣的方法再抽取5人,再從這5人中隨機選出3人贈送外賣優(yōu)惠券,求選出的3人中至少有2人經(jīng)常使用網(wǎng)絡(luò)外賣的概率;
②將頻率視為概率,從市所有參與調(diào)查的網(wǎng)民中隨機抽取10人贈送禮品,記其中經(jīng)常使用網(wǎng)絡(luò)外賣的人數(shù)為,求的數(shù)學(xué)期望和方差.
參考公式: ,其中.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}的前n項和Sn=an﹣1,則關(guān)于數(shù)列{an}的下列說法中,正確的個數(shù)有( )
①一定是等比數(shù)列,但不可能是等差數(shù)列
②一定是等差數(shù)列,但不可能是等比數(shù)列
③可能是等比數(shù)列,也可能是等差數(shù)列
④可能既不是等差數(shù)列,又不是等比數(shù)列
⑤可能既是等差數(shù)列,又是等比數(shù)列.
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ln(1+|x|)﹣ ,則使得f(x)>f(2x﹣1)成立的取值范圍是( )
A.(﹣∞, )∪(1,+∞)?
B.( ,1)
C.(- , )?
D.(﹣∞,﹣ ,)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com