【題目】已知| |=4,| |=8,| |=4 .
(1)計算:① ,②|4 ﹣2 |
(2)若( +2 )⊥(k ﹣ ),求實數(shù)k的值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系xOy中,設(shè)橢圓E: =1(a>b>0),其中b= a,F(xiàn)為橢圓的右焦點,P(1,1)為橢圓E內(nèi)一點,PF⊥x軸.
(1)求橢圓E的方程;
(2)過P點作斜率為k1 , k2的兩條直線分別與橢圓交于點A,C和B,D.若滿足|AP||PC|=|BP||DP|,問k1+k2是否為定值?若是,請求出此定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若,求曲線在點處的切線方程;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)設(shè)函數(shù).若對于任意,都有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過點,點是橢圓上在第一象限的點,直線 交軸于點,直線交軸于點.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程和離心率;
(Ⅱ)是否存在點,使得直線 與直線平行?若存在,求出點的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=sin(2x+ )+tan cos2x.
(1)求f(x)的最小正周期及其圖象的對稱軸方程;
(2)求函數(shù)f(x)在區(qū)間(0, )上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)φ(x)=,a為正常數(shù).
(Ⅰ)若f(x)=ln x+φ(x),且a=4,討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若g(x)=|ln x|+φ(x),且對任意x1,x2∈(0,2],x1≠x2都有
(ⅰ)求實數(shù)a的取值范圍;
(ⅱ)求證:當(dāng)x∈(0,2]時,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線 (t為參數(shù)), ( 為參數(shù)).
(1)化 的方程為普通方程;
(2)若 上的點對應(yīng)的參數(shù)為 ,Q為 上的動點,求PQ中點M到直線(t為參數(shù))距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,拋物線的方程為.
(1)以坐標(biāo)原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,求的極坐標(biāo)方程;
(2)直線的參數(shù)方程是(為參數(shù)),與交于兩點, ,求的斜率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com