平面α與平面β平行的條件可以是(  )
A、α內(nèi)有無(wú)窮多條直線都與β平行
B、直線a∥α,a∥β且直線a不在α內(nèi),也不在β內(nèi)
C、直線a⊆α,直線b⊆β且a∥β,b∥α
D、α內(nèi)的任何直線都與β平行
考點(diǎn):平面與平面之間的位置關(guān)系
專(zhuān)題:空間位置關(guān)系與距離
分析:對(duì)四個(gè)選項(xiàng)分別分析選擇.當(dāng)α內(nèi)有無(wú)窮多條直線與β平行時(shí),a與β可能平行,也可能相交,當(dāng)直線a∥α,a∥β時(shí),a與β可能平行,也可能相交,
故不選A、B,在兩個(gè)平行平面內(nèi)的直線可能平行,也可能是異面直線,故不選 C,利用排除法應(yīng)選D.
解答: 解:對(duì)于A,當(dāng)α內(nèi)有無(wú)窮多條直線與β平行時(shí),a與β可能平行,也可能相交,故A錯(cuò)誤.
對(duì)于B,當(dāng)直線a∥α,a∥β時(shí),a與β可能平行,也可能相交,故B錯(cuò)誤.
對(duì)于C,當(dāng)直線a?α,直線b?β,且a∥β 時(shí),直線a 和直線 b可能平行,也可能是異面直線,故 C錯(cuò)誤.
對(duì)于D,當(dāng)α內(nèi)的任何直線都與β 平行時(shí),由兩個(gè)平面平行的定義可得,這兩個(gè)平面平行,
故選 D.
點(diǎn)評(píng):本題考查兩個(gè)平面平行的判定和性質(zhì)的應(yīng)用,注意平面內(nèi)直線的位置關(guān)系,考慮特殊情況.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=ax2-bx+c(a,b∈R),f(-1)=0.對(duì)任意x∈R,f(x)-x≥0恒成立.當(dāng)x∈(0,2)時(shí),f(x)≤
x2+1
2

(1)求f(x)的解析式;
(2)若函數(shù)g(x)=log2(x2+ax-9)的定義域?yàn)閇1,2].對(duì)任意x1,x2∈[-
1
2
,
3
2
]
,不等式|f(2x2)-f(2x1)|≤g(x)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面△ABC的直觀圖A′B′C′是邊長(zhǎng)為a的正三角形則原三角形的面積是(  )
A、
6
2
a2
B、
3
4
a2
C、
3
2
a2
D、
1
2
a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{an}滿足:a1=-
1
4
,anan-1=an-1
-1,(n>1),則a2015=( 。
A、-
1
4
B、
1
4
C、
4
5
D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax-(k-1)a-x,(a>0且a≠1)是定義域?yàn)镽的奇函數(shù),且f(1)=
3
2

(1)求k,a的值;
(2)求函數(shù)f(x)在[1,+∞)上的值域;
(3)設(shè)g(x)=a2x+a-2x-2m•f(x),若g(x)在[1,+∞)上的最小值為-2,求m的值;
(4)對(duì)于(3)中函數(shù)g(x),如果g(x)>0在[1,+∞)上恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知焦點(diǎn)x軸上的橢圓
x2
m
+
y2
2
=1的離心率為
1
2
,則m的值是( 。
A、
2
3
B、
4
3
C、
5
3
D、
8
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,且對(duì)任意n∈N*都有Sn+
1
2
an=
1
2

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log3a1+log3a2+log3a3+…+log3an,求數(shù)列{
1
bn
}
的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(t,2)在不等式組
x+y≤4
y≥x
x≥1
所表示的平面區(qū)域內(nèi)運(yùn)動(dòng),l為過(guò)點(diǎn)P和坐標(biāo)原點(diǎn)O的直線,則L的斜率的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
1-2x
的值域是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案