已知雙曲線
的一條漸近線經(jīng)過點
,則該雙曲線的離心率為___________.
試題分析:雙曲線
的漸近線方程為
,將
代入得
。
點評:簡單題,雙曲線
的漸近線方程為
,離心率
。
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,在平面直角坐標系
中,橢圓
的焦距為2,且過點
.
求橢圓
的方程;
若點
,
分別是橢圓
的左、右頂點,直線
經(jīng)過點
且垂直于
軸,點
是橢圓上異于
,
的任意一點,直線
交
于點
(。┰O(shè)直線
的斜率為
直線
的斜率為
,求證:
為定值;
(ⅱ)設(shè)過點
垂直于
的直線為
.求證:直線
過定點,并求出定點的坐標.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
已知拋物線
:
和點
,若拋物線
上存在不同兩點
、
滿足
.
(I)求實數(shù)
的取值范圍;
(II)當
時,拋物線
上是否存在異于
的點
,使得經(jīng)過
三點的圓和拋物線
在點
處有相同的切線,若存在,求出點
的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在平面直角坐標系中,
的兩個頂點
、
的坐標分別是(-1,0),(1,0),點
是
的重心,
軸上一點
滿足
,且
.
(1)求
的頂點
的軌跡
的方程;
(2)不過點
的直線
與軌跡
交于不同的兩點
、
,當
時,求
與
的關(guān)系,并證明直線
過定點.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知橢圓
與雙曲線
有相同的焦點
和
,若
是
的等比中項,
是
與
的等差中項,則橢圓的離心率是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分13分)已知函數(shù)
(其中
且
為常數(shù))的圖像經(jīng)過點A
、B
.
是函數(shù)
圖像上的點,
是
正半軸上的點.
(1) 求
的解析式;
(2) 設(shè)
為坐標原點,
是一系列正三角形,記它們的邊長是
,求數(shù)列
的通項公式;
(3) 在(2)的條件下,數(shù)列
滿足
,記
的前
項和為
,證明:
。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分)設(shè)橢圓E:
(a,b>0)過M(2,
) ,N(
,1)兩點,O為坐標原點.
(Ⅰ)求橢圓E的方程;
(Ⅱ)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交A,B且
?若存在,寫出該圓的方程,若不存在說明理由。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)
已知橢圓
的離心率為
,短軸一個端點到右焦點的距離為
.
(1)求橢圓
的方程;
(2)設(shè)直線
與橢圓
交于
兩點,坐標原點
到直線
的距離為
,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
拋物線
的焦點與雙曲線
的右焦點重合.
(Ⅰ)求拋物線的方程;
(Ⅱ)求拋物線的準線與雙曲線的漸近線圍成的三角形的面積.
查看答案和解析>>