【題目】在平面直角坐標系xOy中,已知直線與圓O:相切.

(1)直線l過點(2,1)且截圓O所得的弦長為,求直線l的方程;

(2)已知直線y=3與圓O交于A,B兩點,P是圓上異于A,B的任意一點,且直線AP,BPy軸相交于M,N點.判斷點M、N的縱坐標之積是否為定值?若是,求出該定值;若不是,說明理由.

【答案】(1);(2)見解析.

【解析】

(1)記圓心到直線l的距離為d,利用垂徑定理求得d.當(dāng)直線l與x軸垂直時,直線l的方程為x=2,滿足題意;當(dāng)直線l與x軸不垂直時,設(shè)直線l的方程為y﹣1=k(x﹣2),利用圓心到直線的距離列式求得k,則直線方程可求;

(2)設(shè)P(x1,y1),由直線y=3與圓O交于A、B兩點,不妨取A(1,3),B(﹣1,3),分別求出直線PA、PB的方程,進一步得到M,N的坐標,由P在圓上,整體運算可得為定值.

直線x﹣3y﹣10=0與圓O:x2+y2=r2(r>0)相切,

圓心O到直線x﹣3y﹣10=0的距離為r=

(1)記圓心到直線l的距離為d,∴d=

當(dāng)直線l與x軸垂直時,直線l的方程為x=2,滿足題意;

當(dāng)直線l與x軸不垂直時,設(shè)直線l的方程為y﹣1=k(x﹣2),即kx﹣y+(1﹣2k)=0.

,解得k=﹣,此時直線l的方程為3x+4y﹣10=0.

綜上,直線l的方程為x=2或3x+4y﹣10=0;

(2)點M、N的縱坐標之積為定值10.

設(shè)P(x1,y1),

直線y=3與圓O交于A、B兩點,不妨取A(1,3),B(﹣1,3),

直線PA、PB的方程分別為y﹣3=,y﹣3=

令x=0,得M(0,),N(0,),

(*).

點P(x1,y1)在圓C上,,即

代入(*)式,得為定值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面角坐標系中,以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為,將曲線向左平移個單位長度得到曲線.

(1)求曲線的參數(shù)方程;

(2)已知為曲線上的動點, 兩點的極坐標分別為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩隊進行一場排球比賽,根據(jù)以往經(jīng)驗,單局比賽甲隊勝乙隊的概率為.本場比賽采用五局三勝制,即先勝三局的隊獲勝,比賽結(jié)束.設(shè)各局比賽相互間沒有影響且無平局.求:

(1)前三局比賽甲隊領(lǐng)先的概率;

(2)設(shè)本場比賽的局數(shù)為,求的概率分布和數(shù)學(xué)期望. (用分數(shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為弘揚中華民族優(yōu)秀傳統(tǒng)文化,樹立正確的價值導(dǎo)向,落實立德樹人根本任務(wù),某市組織30000名高中學(xué)生進行古典詩詞知識測試,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機抽取100名學(xué)生,記錄他們的分數(shù),整理所得頻率分布直方圖如圖:

)規(guī)定成績不低于60分為及格,不低于85分為優(yōu)秀,試估計此次測試的及格率及優(yōu)秀率;

)試估計此次測試學(xué)生成績的中位數(shù);

)已知樣本中有的男生分數(shù)不低于80分,且樣本中分數(shù)不低于80分的男女生人數(shù)相等,試估計參加本次測試30000名高中生中男生和女生的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形中,,分別是的中點,將沿著向上翻折到的位置,連接,.

1)求證:平面;

2)若翻折后,四棱錐的體積,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一個半圓中有兩個互切的內(nèi)切半圓,由三個半圓弧圍成曲邊三角形,作兩個內(nèi)切半圓的公切線把曲邊三角形分隔成兩塊,阿基米德發(fā)現(xiàn)被分隔的這兩塊的內(nèi)切圓是同樣大小的,由于其形狀很像皮匠用來切割皮料的刀子,他稱此為“皮匠刀定理”,如圖,若,則陰影部分與最大半圓的面積比為(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),下述四個結(jié)論:

是偶函數(shù);

的最小正周期為;

的最小值為0;

上有3個零點

其中所有正確結(jié)論的編號是(

A.①②B.①②③C.①③④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體中,是棱的中點,是側(cè)面內(nèi)的動點,且平面,則與平面所成角的正切值構(gòu)成的集合是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一個半圓中有兩個互切的內(nèi)切半圓,由三個半圓弧圍成曲邊三角形,作兩個內(nèi)切半圓的公切線把曲邊三角形分隔成兩塊,阿基米德發(fā)現(xiàn)被分隔的這兩塊的內(nèi)切圓是同樣大小的,由于其形狀很像皮匠用來切割皮料的刀子,他稱此為“皮匠刀定理”,如圖,若,則陰影部分與最大半圓的面積比為(

A.B.

C.D.

查看答案和解析>>

同步練習(xí)冊答案