【答案】
分析:(1)利用二項(xiàng)式定理求出,a
1=1,d=1,①利用組合數(shù)公式可求出S
2,S
3,S
4,②可得出S
n=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225344155194305/SYS201311012253441551943020_DA/0.png)
b
n,再用倒序相加法證明.
(2)通項(xiàng)a
kC
nk=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225344155194305/SYS201311012253441551943020_DA/1.png)
,利用分組法,結(jié)合二項(xiàng)式定理的逆用、二項(xiàng)式系數(shù)的性質(zhì),求出 T
n=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225344155194305/SYS201311012253441551943020_DA/2.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225344155194305/SYS201311012253441551943020_DA/3.png)
[
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225344155194305/SYS201311012253441551943020_DA/4.png)
].再利用數(shù)列Tn與cn的關(guān)系求出c
n=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225344155194305/SYS201311012253441551943020_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225344155194305/SYS201311012253441551943020_DA/6.png)
,從而易證{c
n}是等比數(shù)列.
解答:解:(1)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225344155194305/SYS201311012253441551943020_DA/7.png)
展開式的通項(xiàng)為
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225344155194305/SYS201311012253441551943020_DA/8.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225344155194305/SYS201311012253441551943020_DA/9.png)
,令3-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225344155194305/SYS201311012253441551943020_DA/10.png)
r=0,r=2,
常數(shù)項(xiàng)為(-2)
2C
62=60,a
1=1,在
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225344155194305/SYS201311012253441551943020_DA/11.png)
展開式中令x=1,得出各項(xiàng)系數(shù)和為(1-2)
6=1,即d=1.a(chǎn)
n=n.
①S
2=C
21+2C
22=4,S
3=C
31+2C
32+3C
33=12,S
4=C
41+2C
42+3C
43+4C
44=32
②S
n=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225344155194305/SYS201311012253441551943020_DA/12.png)
b
n∵S
n=C
n1+2C
n2+3C
n3+4C
n4+…+nC
nn
又 S
n=nC
nn+(n-1)C
n n-1+(n-2)C
n n-2+(n-3)C
n n-3+…+C
n1
兩式相加得2S
n=C
n1+n(C
n1+C
n2+C
n3+C
n4+…+C
nn-1)+nC
nn=n(2n-C
n-C
nn)+2n=n•2
n=b
n
∴S
n=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225344155194305/SYS201311012253441551943020_DA/13.png)
b
n.
(2)∵a
kC
nk=
∴S
n=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225344155194305/SYS201311012253441551943020_DA/15.png)
-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225344155194305/SYS201311012253441551943020_DA/16.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225344155194305/SYS201311012253441551943020_DA/17.png)
-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225344155194305/SYS201311012253441551943020_DA/18.png)
(2
n-1)=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225344155194305/SYS201311012253441551943020_DA/19.png)
[(1+q)
n-2
n].
∴T
n=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225344155194305/SYS201311012253441551943020_DA/20.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225344155194305/SYS201311012253441551943020_DA/21.png)
[
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225344155194305/SYS201311012253441551943020_DA/22.png)
].
當(dāng)n=1時(shí),c
1=T
1=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225344155194305/SYS201311012253441551943020_DA/23.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225344155194305/SYS201311012253441551943020_DA/24.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225344155194305/SYS201311012253441551943020_DA/25.png)
.
當(dāng)n≥2時(shí) c
n=T
n-T
n-1=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225344155194305/SYS201311012253441551943020_DA/26.png)
[
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225344155194305/SYS201311012253441551943020_DA/27.png)
]=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225344155194305/SYS201311012253441551943020_DA/28.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225344155194305/SYS201311012253441551943020_DA/29.png)
,對(duì)n=1時(shí)也成立.
∴c
n=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225344155194305/SYS201311012253441551943020_DA/30.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225344155194305/SYS201311012253441551943020_DA/31.png)
,{c
n}是以
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225344155194305/SYS201311012253441551943020_DA/32.png)
為首項(xiàng),以
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225344155194305/SYS201311012253441551943020_DA/33.png)
為公比的等比數(shù)列.
點(diǎn)評(píng):重點(diǎn)考察二項(xiàng)式定理的應(yīng)用,解決的方法有倒序相加法求和,利用數(shù)列和的定義求通項(xiàng),難點(diǎn)在于綜合分析,配湊逆用二項(xiàng)式定理,屬于難題.考查計(jì)算、化簡能力.