(本小題滿分14分)

設(shè)函數(shù),其中a>0,曲線在點(diǎn)P(0,)處的切線方程為y=1

(Ⅰ)確定b、c的值

(Ⅱ)設(shè)曲線在點(diǎn)()及()處的切線都過點(diǎn)(0,2)證明:當(dāng)時,

(Ⅲ)若過點(diǎn)(0,2)可作曲線的三條不同切線,求a的取值范圍。

本小題主要考查函數(shù)的單調(diào)性、極值、導(dǎo)數(shù)等基本知識,同時考查綜合運(yùn)用數(shù)學(xué)知識進(jìn)行推理論證的能力。(滿分14分)

解:(Ⅰ)由f(x)=得:f(0)=c,f’(x)=,f’(0)=b。

又由曲線y=f(x)在點(diǎn)p(0,f(0))處的切線方程為y=1,得到f(0)=1,f’(0)=0。

故b=0,c=1。

(Ⅱ)f(x)=,f’(x)=。由于點(diǎn)(t,f(t))處的切線方程為

y-f(t)=f’(t)(x-t),而點(diǎn)(0,2)在切線上,所以2-f(t)= f’(t)(-t),化簡得

,即t滿足的方程為。

下面用反證法證明。

假設(shè)f’()=,由于曲線y=f(x)在點(diǎn)處的切線都過點(diǎn)(0,2),則下列等式成立。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達(dá)式,并求f(x)的最小正周期;
(II)當(dāng)x∈[0,
π
2
]  時,求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)AB是橢圓C1的兩個焦點(diǎn),當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進(jìn)行了監(jiān)測統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.

⑴ 求,滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習(xí)冊答案