已知函數(shù)在是增函數(shù),在(0,1)為減函數(shù).
(I)求、的表達(dá)式;
(II)求證:當(dāng)時,方程有唯一解;
(Ⅲ)當(dāng)時,若在∈內(nèi)恒成立,求的取值范圍.
(I)(II)由(1)可知,方程,
設(shè),
令,并由得解知;(III)
解析試題分析:(I)依題意,即,.
∵上式恒成立,∴ ① …………………………1分
又,依題意,即,.
∵上式恒成立,∴ ② …………………………2分
由①②得. …………………………3分
∴ …………………………4分
(II)由(1)可知,方程,
設(shè),
令,并由得解知 ………5分
令由 …………………………6分
列表分析:
知在處有一個最小值0, …………………………7分(0,1) 1 (1,+¥) - 0 + 遞減 0 遞增
當(dāng)時,>0,∴在(0,+¥)上只有一個解.
即當(dāng)x>0時,方程有唯一解. ……………………8分
(III)設(shè), ……9分
在為減函數(shù) 又 …………11分
所以:為所求范圍. ………………12分
考點:本題考查了導(dǎo)數(shù)的運用
點評:導(dǎo)數(shù)的應(yīng)用是高考的一個重點,利用導(dǎo)數(shù)求最值及判斷函數(shù)的單調(diào)性比用定義法要簡單的多,要注意利用這個工具
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題共8分)
提高二環(huán)路的車輛通行能力可有效改善整個城區(qū)的交通狀況,在一般情況下,二環(huán)路上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù)。當(dāng)二環(huán)路上的車流密度達(dá)到600輛/千米時,造成堵塞,此時車流速度為0;當(dāng)車流密度不超過60輛/千米時,車流速度為80千米/小時,研究表明:當(dāng)60≤x≤600時,車流速度v是車流密度x的一次函數(shù)。
(Ⅰ)當(dāng)0≤x≤600時,求函數(shù)f(x)的表達(dá)式;
(Ⅱ)當(dāng)車流密度x為多大時,車流量(單位時間內(nèi)通過二環(huán)路上某觀測點的車輛數(shù),單位:輛/小時)f(x)=x·v(x)可以達(dá)到最大,并求出最大值。(精確到1輛/小時)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)為常數(shù),且)滿足條件:,且方程有兩個相等的實數(shù)根.
(1)求的解析式;
(2)求函數(shù)在區(qū)間上的最大值和最小值;
(3)是否存在實數(shù)使的定義域和值域分別為和,如果存在,求出的值,如不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖建立平面直角坐標(biāo)系,軸在地平面上,軸垂直于地平面,單位長度為1千米.某炮位于坐標(biāo)原點.已知炮彈發(fā)射后的軌跡在表示的曲線上,其中與發(fā)射方向有關(guān),炮的射程是指炮彈落地點的橫坐標(biāo).
(1)求炮的最大射程;
(2)設(shè)在第一象限有一飛行物(忽略其大。滹w行高度為3.2千米,試問它的橫坐標(biāo)不超過多少時,炮彈可以擊中它?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(滿分12分)
已知二次函數(shù)滿足:,且的
解集為
(1)求的解析式;
(2)設(shè),若在上的最小值為-4,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分13分)設(shè)函數(shù),且,,求證:(1)且;
(2)函數(shù)在區(qū)間內(nèi)至少有一個零點;
(3)設(shè)是函數(shù)的兩個零點,則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某工廠每天生產(chǎn)某種產(chǎn)品最多不超過40件,并且在生產(chǎn)過程中產(chǎn)品的正品率與每日生產(chǎn)產(chǎn)品件數(shù)()間的關(guān)系為,每生產(chǎn)一件正品盈利4000元,每出現(xiàn)一件次品虧損2000元.
(注:正品率=產(chǎn)品的正品件數(shù)÷產(chǎn)品總件數(shù)×100%)
(1)將日利潤(元)表示成日產(chǎn)量(件)的函數(shù);
(2)求該廠的日產(chǎn)量為多少件時,日利潤最大?并求出日利潤的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)已知函數(shù)在點處取得極小值-4,使其導(dǎo)函數(shù)的的取值范圍為(1,3)
(Ⅰ)求的解析式及的極大值;
(Ⅱ)當(dāng)時,求的最大值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com