【題目】已知離心率為的橢圓,右焦點(diǎn)到橢圓上的點(diǎn)的距離的最大值為3。
(1)求橢圓的方程;
(2)設(shè)點(diǎn)是橢圓上兩個(gè)動(dòng)點(diǎn),直線與橢圓的另一交點(diǎn)分別為,且直線的斜率之積等于,問(wèn)四邊形的面積是否為定值?請(qǐng)說(shuō)明理由。
【答案】(1);(2)四邊形的面積為定值。
【解析】
試題分析:(1)由題意知:,又,∴,∴,所以橢圓的方程為;(2)當(dāng)直線的斜率不存在時(shí),設(shè)點(diǎn),可得,,∴。當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,聯(lián)立橢圓得,寫(xiě)出根與系數(shù)關(guān)系,根據(jù)化簡(jiǎn)得.利用弦長(zhǎng)公式和點(diǎn)到直線距離公式,計(jì)算。
試題解析:
(1)由題意知:,又,∴,∴,所以橢圓的方程為。
(2)(1)當(dāng)直線的斜率不存在時(shí),設(shè)點(diǎn),可得,,∴。
(2)當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,聯(lián)立橢圓得,設(shè),有,,。∵,得,∴,化簡(jiǎn)得:。
∵,原點(diǎn)到直線的距離,∴綜上,四邊形的面積為定值。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如下圖,在四棱錐中,面,,,,,,,為的中點(diǎn)。
(1)求證:面;
(2)線段上是否存在一點(diǎn),滿(mǎn)足?若存在,試求出二面角的余弦值;若不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),(其中,是自然對(duì)數(shù)的底數(shù))。
(Ⅰ)若關(guān)于的方程有唯一實(shí)根,求的值;
(Ⅱ)若過(guò)原點(diǎn)作曲線的切線與直線垂直,證明:;
(Ⅲ)設(shè),當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】重慶某重點(diǎn)中學(xué)高一新生小王家在縣城A地,現(xiàn)在主城B地上學(xué)。周六小王的父母從早上8點(diǎn)從家出發(fā),駕車(chē)3小時(shí)到達(dá)主城B地,期間由于交通等原因,小王父母的車(chē)所走的路程(單位:km)與離家的時(shí)間(單位:h)的函數(shù)關(guān)系為。達(dá)到主城B地后,小王父母把車(chē)停在B地,在學(xué)校陪小王玩到16點(diǎn),然后開(kāi)車(chē)從B地以的速度沿原路返回。
(1)求這天小王父母的車(chē)所走路程(單位:km)與離家時(shí)間(單位:h)的函數(shù)解析式;
(2)在距離小王家60處有一加油站,求這天小王父母的車(chē)途經(jīng)加油站的時(shí)間。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某天甲、乙兩廠的產(chǎn)品質(zhì)量,采用分層抽樣的方法從甲、乙兩廠生產(chǎn)的產(chǎn)品中分別抽取14件和5件,測(cè)量產(chǎn)品中的微量元素的含量(單位:毫克).當(dāng)產(chǎn)品中的微量元素滿(mǎn)足,且時(shí),該產(chǎn)品為優(yōu)等品.已知甲廠該天生產(chǎn)的產(chǎn)品共有98件,下表是乙廠的5件產(chǎn)品的測(cè)量數(shù)據(jù):
編號(hào) | 1 | 2 | 3 | 4 | 5 |
169 | 178 | 166 | 175 | 180 | |
75 | 80 | 77 | 70 | 81 |
(1)求乙廠該天生產(chǎn)的產(chǎn)品數(shù)量;
(2)用上述樣本數(shù)據(jù)估計(jì)乙廠該天生產(chǎn)的優(yōu)等品的數(shù)量;
(3)從乙廠抽出取上述5件產(chǎn)品中,隨機(jī)抽取2件,求抽取的2件產(chǎn)品中優(yōu)等品至少有1件的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)在上是奇函數(shù),且對(duì)任意都有,當(dāng)時(shí),,:
(1)求的值;
(2)判斷的單調(diào)性,并證明你的結(jié)論;
(3)求不等式的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定點(diǎn),動(dòng)點(diǎn)在圓:上,線段的中垂線為直線,直線交直線于點(diǎn),動(dòng)點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)若點(diǎn)在第二象限,且相應(yīng)的直線與曲線和拋物線:都相切,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若的展開(kāi)式中,第二、三、四項(xiàng)的二項(xiàng)式系數(shù)成等差數(shù)列.
(1)求的值;
(2)此展開(kāi)式中是否有常數(shù)項(xiàng),為什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)A,B是非空集合,定義A×B={x|x∈A∪B,且xA∩B},已知A={x|0≤x≤2},B={x|x≥1},則A×B等于( )
A.(2,+∞)
B.[0,1]∪[2,+∞)
C.[0,1)∪(2,+∞)
D.[0,1]∪(2,+∞)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com