【題目】在一次數學考試中,從甲,乙兩個班級各抽取10名同學的成績進行統(tǒng)計分析,他們成績的莖葉圖如圖所示,成績不小于90分為及格.
(1)從兩班10名同學中各抽取一人,在有人及格的情況下,求乙班同學不及格的概率;
(2)從甲班10人中取一人,乙班10人中取兩人,三人中及格人數記為,求的分布列和數學期望.
科目:高中數學 來源: 題型:
【題目】已知一個正四面體和一個正四棱錐,它們的各條棱長均相等,則下列說法:
①它們的高相等;②它們的內切球半徑相等;③它們的側棱與底面所成的線面角的大小相等;④若正四面體的體積為,正四棱錐的體積為,則;⑤它們能拼成一個斜三棱柱.其中正確的個數為( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在中,角A,B,C的對邊分別為a,b,c,
(1)若還同時滿足下列四個條件中的三個:①,②,③,④的面積,請指出這三個條件,并說明理由;
(2)若,求周長L的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在一次運動會上,某單位派出了由6名主力隊員和5名替補隊員組成的代表隊參加比賽.
(1)如果隨機抽派5名隊員上場比賽,將主力隊員參加比賽的人數記為,求隨機變量的數學期望;
(2)若主力隊員中有2名隊員在練習比賽中受輕傷,不宜同時上場;替補隊員中有2名隊員身材相對矮小,也不宜同時上場,那么為了場上參加比賽的5名隊員中至少有3名主力隊員,教練員有多少種組隊方案?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,,其中為常數,函數和的圖象在它們與坐標軸交點處的切線互相平行.
(1)求的值;
(2)若存在,使不等式成立,求實數的取值范圍;
(3)令,求證:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為培養(yǎng)學生對傳統(tǒng)文化的興趣,某校從理科甲班抽取60人,從文科乙班抽取50人參加傳統(tǒng)文化知識競賽.
(1)根據題目條件完成下邊列聯表,并據此判斷是否有99%的把握認為學生的傳統(tǒng)文化知識競賽成績優(yōu)秀與文理分科有關.
優(yōu)秀人數 | 非優(yōu)秀人數 | 總計 | |
甲班 | |||
乙班 | 20 | ||
總計 | 60 |
(2)現已知,,三人獲得優(yōu)秀的概率分別為,,,設隨機變量表示,,三人中獲得優(yōu)秀的人數,求的分布列及期望.
附:,.
0.100 | 0.050 | 0.025 | 0.010 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學開展勞動實習,學生加工制作零件,零件的截面如圖所示.O為圓孔及輪廓圓弧AB所在圓的圓心,A是圓弧AB與直線AG的切點,B是圓弧AB與直線BC的切點,四邊形DEFG為矩形,BC⊥DG,垂足為C,tan∠ODC=,,EF=12 cm,DE=2 cm,A到直線DE和EF的距離均為7 cm,圓孔半徑為1 cm,則圖中陰影部分的面積為________cm2.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列與滿足,.
(1)若,且,求的通項公式;
(2)設的第項是最大項,即,求證:的第項是最大項;
(3)設,求的取值范圍,使得有最大值與最小值,且.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com