在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,0),B(-2,0),C(-2,1).設(shè)k為非零實(shí)數(shù),矩陣M,N,點(diǎn)AB、C在矩陣MN對(duì)應(yīng)的變換下得到點(diǎn)分別為A1B1、C1,△A1B1C1的面積是△ABC面積的2倍,求k的值.
2或-2
由題設(shè)得,MN
,可知A1(0,0)、B1(0,-2)、C1(k,-2).計(jì)算得△ABC的面積是1,△A1B1C1的面積是|k|,則由題設(shè)知:
|k|=2×1=2.
所以k的值為2或-2.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

二階矩陣M有特征值,其對(duì)應(yīng)的一個(gè)特征向量e=,并且矩陣M對(duì)應(yīng)的變換將點(diǎn)變換成點(diǎn)
(1)求矩陣M;
(2)求矩陣M的另一個(gè)特征值及對(duì)應(yīng)的一個(gè)特征向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知二階矩陣M有特征值λ1=4及屬于特征值4的一個(gè)特征向量并有特征值λ2=-1及屬于特征值-1的一個(gè)特征向量(1)求矩陣M.(2)求M5α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知矩陣M=有特征向量,相應(yīng)的特征值為λ1,λ2.
(1)求矩陣M的逆矩陣M-1及λ1,λ2;
(2)對(duì)任意向量,求M100.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知2×2矩陣M=有特征值λ=-1及對(duì)應(yīng)的一個(gè)特征向量e1=.
(1)求矩陣M.
(2)設(shè)曲線C在矩陣M的作用下得到的方程為x2+2y2=1,求曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如果曲線x2+4xy+3y2=1在2×2矩陣的作用下變換為曲線x2-y2=1,試求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知矩陣M有特征值λ1=4及對(duì)應(yīng)的一個(gè)特征向量e1.求:
(1)矩陣M;
(2)曲線5x2+8xy+4y2=1在M的作用下的新曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

把三階行列式中第1行第3列元素的代數(shù)余子式記為,則關(guān)于 的不等式的解集為      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

=,求α的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案