分析 (1)利用向量的數(shù)量積公式,求C的方程;
(2)由題意,圓心到直線的距離d=$\frac{4}{\sqrt{{k}^{2}+1}}$=$\sqrt{10-9}$,即可求k的值.
解答 解:(1)設(shè)M(x,y),則
∵$\overrightarrow{MA}$•$\overrightarrow{MB}$=1,
∴(-3-x,-y)•(3-x,-y)=1,
∴x2+y2=10,即C的方程為x2+y2=10;
(2)由題意,圓心到直線的距離d=$\frac{4}{\sqrt{{k}^{2}+1}}$=$\sqrt{10-9}$,
∴$k=±\sqrt{3}$.
點評 本題考查向量的數(shù)量積公式,考查關(guān)鍵方程,考查直線與圓的位置關(guān)系,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,+∞) | B. | (-∞,-1) | C. | (-1,1) | D. | (-∞,1)∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{3}{5}$ | C. | $\frac{6}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (¬p)∧(¬q) | B. | p∨(¬q) | C. | p∧(¬q) | D. | (¬p)∧q |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{6}{5}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com