【題目】如圖,在四棱錐中,底面為矩形且,側(cè)面底面,且側(cè)面是正三角形,中點(diǎn).

1)證明:平面;

2)求二面角的余弦值.

【答案】1)證明見(jiàn)解析;(2

【解析】

(1)由側(cè)面是正三角形,可知,進(jìn)而可知底面,從而可得,再結(jié)合底面為矩形且,可得,從而可知,即,即可證明平面;

(2)過(guò)的平行線,顯然兩兩垂直,以為原點(diǎn)建立如下圖所示的空間直角坐標(biāo)系,分別求出平面的法向量,平面的法向量,設(shè)二面角的大小為,易知為鈍角,可得,求解即可.

1)證明:因?yàn)閭?cè)面是正三角形,的中點(diǎn),所以.

因?yàn)閭?cè)面底面,側(cè)面底面,所以底面,所以.

因?yàn)榈酌?/span>為矩形且,所以.

所以,則.

所以,即.

又因?yàn)?/span>,所以平面.

2)過(guò)的平行線,顯然兩兩垂直,以為原點(diǎn)建立如下圖所示的空間直角坐標(biāo)系,

不妨設(shè),則點(diǎn),,,,

所以,,.

設(shè)平面的法向量為.

,得,

,得平面的法向量為;

同理,設(shè)平面的法向量為.

,

,得平面的法向量為.

設(shè)二面角的大小為,易知為鈍角,則.

所以二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),mR.

1)若m=﹣1,求函數(shù)在區(qū)間[,e]上的最小值;

2)若m0,求函數(shù)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

1)求函數(shù)的極值;

2)對(duì)任意,都有,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C經(jīng)過(guò)點(diǎn),離心率,直線的方程為

(1)求橢圓的方程;

(2)經(jīng)過(guò)橢圓右焦點(diǎn)的任一直線(不經(jīng)過(guò)點(diǎn))與橢圓交于兩點(diǎn),,設(shè)直線相交于點(diǎn),記的斜率分別為,問(wèn):是否為定值,若是,求出此定值,若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求的圖象在處的切線方程;

2)當(dāng)時(shí),求證:上有唯一零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年,國(guó)家逐步推行全新的高考制度.新高考不再分文理科,某省采用3+3模式,其中語(yǔ)文、數(shù)學(xué)、外語(yǔ)三科為必考科目,滿分各150分,另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結(jié)合自己的興趣愛(ài)好等因素,在思想政治、歷史、地理、物理、化學(xué)、生物6門(mén)科目中自選3門(mén)參加考試(63),每科目滿分100分為了應(yīng)對(duì)新高考,某高中從高一年級(jí)1000名學(xué)生(其中男生550人,女姓450人)中,采用分層抽樣的方法從中抽取名學(xué)生進(jìn)行調(diào)查.

1)己知抽取的名學(xué)生中含男生55人,求的值;

2)學(xué)校計(jì)劃在高一上學(xué)期開(kāi)設(shè)選修中的“物理”和“地理”兩個(gè)科目,為了了解學(xué)生對(duì)這兩個(gè)科目的選課情況,對(duì)在(1)的條件下抽取到的名學(xué)生進(jìn)行問(wèn)卷調(diào)查(假定每名學(xué)生在這兩個(gè)科目中必須選擇一個(gè)科目且只能選擇一個(gè)科目),下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表請(qǐng)將列聯(lián)表補(bǔ)充完整,并判斷是否有99%的把握認(rèn)為選擇科目與性別有關(guān)?說(shuō)明你的理由;

選擇“物理”

選擇“地理”

總計(jì)

男生

10

女生

25

總計(jì)

附:,.

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

1)寫(xiě)出曲線的普通方程和直線的直角坐標(biāo)方程;

2)若直線與曲線相交于、兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)際奧委會(huì)將于2017915日在秘魯利馬召開(kāi)130次會(huì)議決定2024年第33屆奧運(yùn)會(huì)舉辦地,目前德國(guó)漢堡,美國(guó)波士頓等申辦城市因市民擔(dān)心賽事費(fèi)用超支而相繼退出,某機(jī)構(gòu)為調(diào)查我國(guó)公民對(duì)申辦奧運(yùn)會(huì)的態(tài)度,選了某小區(qū)的100位居民調(diào)查結(jié)果統(tǒng)計(jì)如下:

支持

不支持

合計(jì)

年齡不大于50

80

年齡大于50

10

合計(jì)

70

100

1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫(xiě)完整;

2)能否在犯錯(cuò)誤的概率不超過(guò)5%的前提下認(rèn)為不同年齡與支持申辦奧運(yùn)有關(guān)?

3)已知在被調(diào)查的年齡大于50歲的支持者中有6名女性,其中2名是女教師.現(xiàn)從這6名女性中隨機(jī)抽取2名,求恰有1名女教師的概率.

附:,,

0.100

0.050

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1求函數(shù)的單調(diào)區(qū)間;

2探究:是否存在實(shí)數(shù),使得恒成立?若存在,求出的值;若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案