【題目】已知函數(shù).
(Ⅰ)若,求函數(shù)的單調(diào)遞減區(qū)間;
(Ⅱ)證明當(dāng)時(shí), ;
(Ⅲ)若關(guān)于的不等式恒成立,求整數(shù)的最小值.
【答案】(Ⅰ);(Ⅱ)證明見解析;(Ⅲ)整數(shù)的最小值為2.
【解析】試題分析:(1)求出導(dǎo)數(shù),解即可求出單減區(qū)間;(2)由(Ⅰ)得: 在遞減,∴,故, 時(shí), ,分別令,累加即可得證;(3)由恒成立得在上恒成立,問(wèn)題等價(jià)于在上恒成立,只需利用導(dǎo)數(shù)求的最大值即可.
試題解析:
(Ⅰ)因?yàn)?/span>,所以
此時(shí), ,
由,得,又,所以,所以的單調(diào)減區(qū)間為.
(Ⅱ)令,由(Ⅰ)得: 在遞減,∴,
故, 時(shí), ,分別令,
故 ,
∴時(shí), .
(Ⅲ)由恒成立得在上恒成立,問(wèn)題等價(jià)于在上恒成立.
令,只要.
因?yàn)?/span>,令,得.
設(shè), 在上單調(diào)遞減,不妨設(shè)的根為.當(dāng)時(shí), ;當(dāng)時(shí), ,
所以在上是增函數(shù);在上是減函數(shù).
所以 .
因?yàn)?/span>, ,所以,此時(shí),即.
所以整數(shù)的最小值為2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)若不等式恒成立,則實(shí)數(shù)的取值范圍;
(2)在(1)中, 取最小值時(shí),設(shè)函數(shù).若函數(shù)在區(qū)間上恰有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;
(3)證明不等式: (且).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】邗江中學(xué)高二年級(jí)某班某小組共10人,利用寒假參加義工活動(dòng),已知參加義工活動(dòng)次數(shù)為1,2,3的人數(shù)分別為3,3,4.現(xiàn)從這10人中選出2人作為該組代表參加座談會(huì).
(1)記“選出2人參加義工活動(dòng)的次數(shù)之和為4”為事件,求事件發(fā)生的概率;
(2)設(shè)為選出2人參加義工活動(dòng)次數(shù)之差的絕對(duì)值,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(Ⅰ)求曲線在點(diǎn)處的切線的斜率;
(Ⅱ)判斷方程(為的導(dǎo)數(shù))在區(qū)間內(nèi)的根的個(gè)數(shù),說(shuō)明理由;
(Ⅲ)若函數(shù)在區(qū)間內(nèi)有且只有一個(gè)極值點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,底面,,,分別是棱,的中點(diǎn),為棱上的一點(diǎn),且//平面.
(1)求的值;
(2)求證:;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)若時(shí), ,求的最小值;
(Ⅱ)設(shè)數(shù)列的通項(xiàng),證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】把長(zhǎng)和寬分別為和2的長(zhǎng)方形沿對(duì)角線折成的二面角,下列正確的命題序號(hào)是__________.
①四面體外接球的體積隨的改變而改變;
②的長(zhǎng)度隨的增大而增大;
③當(dāng)時(shí),長(zhǎng)度最長(zhǎng);
④當(dāng)時(shí),長(zhǎng)度等于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2018屆北京市海淀區(qū)】如圖,三棱柱側(cè)面底面,
, 分別為棱的中點(diǎn).
(Ⅰ)求證: ;
(Ⅱ)求三棱柱的體積;
(Ⅲ)在直線上是否存在一點(diǎn),使得平面?若存在,求出的長(zhǎng);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖矩形中, .點(diǎn)在邊上, 且, 沿直線向上折起成.記二面角的平面角為,當(dāng) 時(shí),
①存在某個(gè)位置,使;
②存在某個(gè)位置,使;
③任意兩個(gè)位置,直線和直線所成的角都不相等.
以上三個(gè)結(jié)論中正確的序號(hào)是
A. ① B. ①② C. ①③ D. ②③
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com