精英家教網 > 高中數學 > 題目詳情
在△ABC中,角A,B,C的對邊分別為a,b,c.已知向量
m
=(a+c,b-a),
n
=(a-c,b),且
m
n

(1)求角C的大。
(2)若sinA+sinB=
6
2
,求角A的值.
分析:(1)由
m
n
得(a+c)(a-c)+(b-a)b=0化簡整理得a2+b2-c2=ab代入余弦定理即可求得cosC,進而求得C.
(2)根據C,求得B=
3
-A
代入sinA+sinB=
6
2
中,根據兩角和與差公式化簡整理得sin(A+
π
6
)=
2
2
,進而求得A.
解答:解:(1)由
m
n
m
n
═(a+c,b-a)•(a-c,b)=0;
整理得a2+b2-c2-ab=0.即a2+b2-c2=ab,
cosC=
a2+b2-c2
2ab
=
ab
2ab
=
1
2

又因為0<C<π,所以C=
π
3

(2)因為C=
π
3
,
所以A+B=
3
,
B=
3
-A

sinA+sinB=
6
2
,得sinA+sin(
3
-A)=
6
2

sinA+
3
2
cosA+
1
2
sinA=
6
2

所以
3
sinA+cosA=
2

sin(A+
π
6
)=
2
2

因為0<A<
2
3
π
,
所以
π
6
<A+
π
6
6

A+
π
6
=
π
4
A+
π
6
=
4

所以A=
π
12
A=
12
點評:本題主要考查了余弦定理的應用和同角三角函數關系.考查了學生綜合分析問題的能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關系一定不成立的是( 。
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D為BC的中點,求△ABC的面積及AD的長度.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,角A,B,C所對邊的長分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習冊答案