設(shè)m是常數(shù),若是雙曲線的一個(gè)焦點(diǎn),則m的值為(    )
A.16B.34C.16或34D.4
A

試題分析:根據(jù)雙曲線的焦點(diǎn)坐標(biāo)判斷雙曲線的焦點(diǎn)位置是解決本題的關(guān)鍵,利用雙曲線標(biāo)準(zhǔn)方程中的分母與焦點(diǎn)非零坐標(biāo)的關(guān)系,列出關(guān)于m的方程,通過(guò)解方程求出m的值解:由于點(diǎn)F(0,5)是雙曲線
的一個(gè)焦點(diǎn),故該雙曲線的焦點(diǎn)在y軸上,從而m>0.從而得出m+9=25,解得m=16.故答案為A
點(diǎn)評(píng):本題考查雙曲線標(biāo)準(zhǔn)方程中的分母幾何意義的認(rèn)識(shí),考查雙曲線焦點(diǎn)位置與方程的關(guān)系、考查學(xué)生對(duì)雙曲線中a,b,c關(guān)系式的理解和掌握程度,考查學(xué)生的方程思想和運(yùn)算能力,屬于基本題型
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知拋物線和點(diǎn)為拋物線上的點(diǎn),則滿足的點(diǎn)有( )個(gè)。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的上頂點(diǎn)為,左焦點(diǎn)為,直線與圓相切.過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn).
(I)求橢圓的方程;
(II)當(dāng)的面積達(dá)到最大時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的左焦點(diǎn)F為圓的圓心,且橢圓上的點(diǎn)到點(diǎn)F的距離最小值為
(I)求橢圓方程;
(II)已知經(jīng)過(guò)點(diǎn)F的動(dòng)直線與橢圓交于不同的兩點(diǎn)A、B,點(diǎn)M(),證明:為定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知M (-3,0)﹑N (3,0),P為坐標(biāo)平面上的動(dòng)點(diǎn),且直線PM與直線PN的斜率之積為常數(shù)m (mm0),點(diǎn)P的軌跡加上MN兩點(diǎn)構(gòu)成曲線C.
求曲線C的方程并討論曲線C的形狀;
(2) 若,曲線C過(guò)點(diǎn)Q (2,0) 斜率為的直線與曲線C交于不同的兩點(diǎn)AB,AB中點(diǎn)為R,直線OR (O為坐標(biāo)原點(diǎn))的斜率為,求證 為定值;
(3) 在(2)的條件下,設(shè),且,求y軸上的截距的變化范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

雙曲線的漸近線為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓(為參數(shù))的離心率是        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在橢圓的焦點(diǎn)為,點(diǎn)p在橢圓上,若,則____   =__    

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(1)(坐標(biāo)系與參數(shù)方程選做題)已知在極坐標(biāo)系下,點(diǎn)是極點(diǎn),則的面積等于_______;
(2).(不等式選擇題)關(guān)于的不等式的解集是____    ____。

查看答案和解析>>

同步練習(xí)冊(cè)答案