10.若函數(shù)f(x)=sin(2x+φ)滿足?x∈R,f(x)≤f($\frac{π}{6}$),則f(x)在[0,π]上的單調(diào)遞增區(qū)間為( 。
A.[0,$\frac{π}{6}$]與[$\frac{π}{2}$,$\frac{2π}{3}$]B.[$\frac{π}{3}$,$\frac{2π}{3}$]C.[0,$\frac{π}{6}$]與[$\frac{2π}{3}$,π]D.[0,$\frac{π}{6}$]與[$\frac{π}{3}$,$\frac{2π}{3}$]

分析 根據(jù)題意得出f($\frac{π}{6}$)=1,求出φ的值寫出f(x)的解析式;
再求f(x)的單調(diào)增區(qū)間,即可得出f(x)在x∈[0,π]上的單調(diào)增區(qū)間.

解答 解:∵f(x)=sin(2x+φ)滿足?x∈R,f(x)≤f($\frac{π}{6}$),
∴f($\frac{π}{6}$)=sin(2×$\frac{π}{6}$+φ)=1,
解得φ=$\frac{π}{6}$+2kπ,k∈Z;
∴f(x)=sin(2x+$\frac{π}{6}$);
令-$\frac{π}{2}$+2kπ≤2x+$\frac{π}{6}$≤$\frac{π}{2}$+2kπ,k∈Z,
解得-$\frac{π}{3}$+kπ≤x≤$\frac{π}{6}$+kπ,k∈Z,
當(dāng)x∈[0,π]時(shí),有[0,$\frac{π}{6}$],[$\frac{2π}{3}$,π]滿足條件.
故選:C.

點(diǎn)評(píng) 本題考查了正弦函數(shù)的圖象與性質(zhì)的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在對(duì)人們的休閑方式的一次調(diào)查中,共調(diào)查了124人,其中女性70人,男性54人.女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運(yùn)動(dòng);男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運(yùn)動(dòng).
(1)根據(jù)以上數(shù)據(jù)建立一個(gè)2×2的列聯(lián)表;
(2)是否有97.5%的把握認(rèn)為性別與休閑方式有關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知以點(diǎn)C為圓心的圓經(jīng)過(guò)點(diǎn)A(0,1)和B(4,3),且圓心在直線3x+y-15=0上.
(Ⅰ)求圓C的方程;
(Ⅱ)設(shè)點(diǎn)P在圓C上,求△PAB的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知集合A={x|x<-1或x≥1},B={x|2a<x≤a+1,a<1},A∪B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.用斜二測(cè)畫法畫出的某平面圖形的直觀圖如圖,邊AB平行于y軸,BC,AD平行于x軸.已知四邊形ABCD的面積為2$\sqrt{2}$ cm2,則原平面圖形的面積為(  )
A.4 cm2B.4$\sqrt{2}$ cm2C.8 cm2D.8$\sqrt{2}$ cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.如果直線 x+2ay-1=0與直線(3a-1)x-ay-1=0平行,則系數(shù)a的值為(  )
A.0或6B.0或$\frac{1}{6}$C.6或 $\frac{1}{6}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知向量 $\overrightarrow{a}$=(2,1),$\overrightarrow$=(3,m).若 ($\overrightarrow{a}$+2$\overrightarrow$)∥(3$\overrightarrow$-$\overrightarrow{a}$),則實(shí)數(shù) m 的值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.《萊因德紙草書》(Rhind Papyrus)是世界上最古老的數(shù)學(xué)著作之一,書中有這樣一道題:把120個(gè)面包分成5份,使每份的面包數(shù)成等差數(shù)列,且較多的三份之和恰好是較少的兩份之和的7倍,則最多的那份有面包( 。
A.43個(gè)B.45個(gè)C.46個(gè)D.48個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知曲線f(x)=x2+a在點(diǎn)(1,f(1))處切線的斜率等于f(2),則實(shí)數(shù)a值為( 。
A.-2B.-1C.$\frac{3}{2}$D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案